Section 4 Slides

Original slides by Leiyi Zhang, Scott Ni

Announcements

- Homework 3 due yesterday
- Homework 4 due next Wednesday (Feb. 2nd) 11:59 pm PDT

Review

(a) Random Variable (rv): A numeric function $X: \Omega \rightarrow \mathbb{R}$ of the outcome.
(b) Range/Support: The support/range of a random variable X, denoted Ω_{X}, is the set of all possible values that X can take on.
(c) Discrete Random Variable (drv): A random variable taking on a countable (either finite or countably infinite) number of possible values.
(d) Probability Mass Function (pmf) for a discrete random variable \mathbf{X} : a function $p_{X}: \Omega_{X} \rightarrow[0,1]$ with $p_{X}(x)=\mathbb{P}(X=x)$ that maps possible values of a discrete random variable to the probability of that value happening, such that $\sum_{x} p_{X}(x)=1$.
(e) Cumulative Distribution Function (CDF) for a random variable \mathbf{X} : a function $F_{X}: R \rightarrow R$ with $F_{X}(x)=\mathbb{P}(X \leq x)$
(f) Expectation (expected value, mean, or average): The expectation of a discrete random variable is defined to be $\mathbb{E}[X]=\sum_{x} x p_{X}(x)=\sum_{x} x \mathbb{P}(X=x)$. The expectation of a function of a discrete random variable $g(X)$ is $\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$.
(g) Linearity of Expectation: Let X and Y be random variables, and $a, b, c \in \mathbb{R}$. Then, $\mathbb{E}[a X+b Y+c]=$ $a \mathbb{E}[X]+b \mathbb{E}[Y]+c$. Also, for any random variables X_{1}, \ldots, X_{n},

$$
\mathbb{E}\left[X_{1}+X_{2}+\ldots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]++\ldots+\mathbb{E}\left[X_{n}\right] .
$$

(h) Variance: Let X be a random variable and $\mu=\mathbb{E}[X]$. The variance of X is defined to be $\operatorname{Var}(X)=$ $\mathbb{E}\left[(X-\mu)^{2}\right]$. Notice that since this is an expectation of a nonnegative random variable $\left((X-\mu)^{2}\right)$, variance is always nonnegative. With some algebra, we can simplify this to $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$.
(i) Standard Deviation: Let X be a random variable. We define the standard deviation of X to be the square root of the variance, and denote it $\sigma=\sqrt{\operatorname{Var}(X)}$.
(j) Property of Variance: Let $a, b \in \mathbb{R}$ and let X be a random variable. Then, $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.
(k) Independence: Random variables X and Y are independent iff

$$
\forall x \forall y, \quad \mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y)
$$

In this case, we have $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$ (the converse is not necessarily true).
(I) i.i.d. (independent and identically distributed): Random variables X_{1}, \ldots, X_{n} are i.i.d. (or iid) iff they are independent and have the same probability mass function.
(m) Variance of Independent Variables: If X is independent of $Y, \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$. This depends on independence, whereas linearity of expectation always holds. Note that this combined with the above shows that $\forall a, b, c \in \mathbb{R}$ and if X is independent of $Y, \operatorname{Var}(a X+b Y+c)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$.

Question 3: "3-sided Die"

Let the random variable X be the sum of two independent rolls of a fair 3 -sided die. (If you are having trouble imagining what that looks like, you can use a 6 -sided die and change the numbers on 3 of its faces.)
(a) What is the probability mass function of X ?
(b) What is the cumulative distribution function of X ?
(c) Find $\mathrm{E}[\mathrm{X}]$ directly from the definition of expectation.
(d) Find $\mathrm{E}[\mathrm{X}]$ again, but this time using linearity of expectation.

Question 3 (a) Solution

$$
p_{X}(k)= \begin{cases}1 / 9 & k=2 \\ 2 / 9 & k=3 \\ 3 / 9 & k=4 \\ 2 / 9 & k=5 \\ 1 / 9 & k=6\end{cases}
$$

Question 3 (b) Solution

$$
F_{X}(k)= \begin{cases}0 & k<2 \\ 1 / 9 & 2 \leqslant k<3 \\ 3 / 9 & 3 \leqslant k<4 \\ 6 / 9 & 4 \leqslant k<5 \\ 8 / 9 & 5 \leqslant k<6 \\ 1 & 6 \leqslant k\end{cases}
$$

Question 3 (c) Solution

$$
\mathbb{E}[X]=\sum_{k=2}^{6} k p_{X}(k)=2 \cdot \frac{1}{9}+3 \cdot \frac{2}{9}+4 \cdot \frac{3}{9}+5 \cdot \frac{2}{9}+6 \cdot \frac{1}{9}=4
$$

Question 3 (d) Solution

- Let Y be the roll of the first die, and Z the roll of the second.

Question 3 (d) Solution

- Let Y be the roll of the first die, and Z the roll of the second.
- Then. $\boldsymbol{X}=\mathbf{Y}+\mathbf{Z}$

$$
\mathbb{E}[X]=\mathbb{E}[Y+Z]
$$

Question 3 (d) Solution

- Let Y be the roll of the first die, and Z the roll of the second.
- Then. $\boldsymbol{X}=\mathbf{Y}+\mathbf{Z}$

$$
\begin{aligned}
\mathbb{E}[X] & =\mathbb{E}[Y+Z] \\
& =\mathbb{E}[Y]+\mathbb{E}[Z]=2+2=4
\end{aligned}
$$

Question 7: "Balls in Bins"

Let X be the number of bins that remain empty when m balls are distributed into n bins randomly and independently. For each ball, each bin has an equal probability of being chosen.

Find $E(X)$.

Question 7 Solution

- $X_{i}=1$ if bin empt ${ }_{r}, X_{i}=0$ otherwise
- $X=\sum_{i=1}^{n} X_{i}$
- $\mathbb{E}\left[X_{i}\right]=1 \cdot \mathbb{P}\left(X_{i}=1\right)+0 \cdot \mathbb{P}\left(X_{i}=0\right)=\mathbb{P}\left(X_{i}=1\right)=\left(\frac{n-1}{n}\right)^{m}$
$\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=n \cdot\left(\frac{n-1}{n}\right)^{m}$

Question 8: "Frogger"

A frog starts on a 1-dimensional number line at 0 . At each second, independently, the frog takes a unit step right with probability p_{1}, to the left with probability p_{2}, and doesn't move with probability p_{3}, where $p_{1}+p_{2}+p_{3}=1$.
After 2 seconds, let X be the location of the frog.
(a) Find the probability mass function for X .
(b) Compute $E(X)$ from the definition.
(c) Compute $E(X)$ again using linearity of expectation.

Question 8 (a) Hint

- The frog will take 2 steps in 2 seconds
- Left, right, or no movement
- On number line, final displacement can be anywhere from 2 units to the left to two units to the right from original point
- How might we calculate the probability of the displacement being each possibility in that range? $\{-2,-1,0,1,2\}$

Question 8 (a) Solution

- Let L be left step, R be right step, and N be no step
- Range of X : $\{-2,-1,0,1,2\}$
$p_{X}(-2)=\mathbb{P}(X=-2)=\mathbb{P}(L L)=p_{2}^{2}$

$$
p_{X}(-1)=\mathbb{P}(X=-1)=\mathbb{P}(L N \cup N L)=2 p_{2} p_{3}
$$

- Repeat for 0,1 , and 2

Question 8 (a) Continued Solution

$$
p_{X}(k)= \begin{cases}p_{2}^{2} & k=-2 \\ 2 p_{2} p_{3} & k=-1 \\ p_{3}^{2}+2 p_{1} p_{2} & k=0 \\ 2 p_{1} p_{3} & k=1 \\ p_{1}^{2} & k=2\end{cases}
$$

Question 8 (b) Solution

We know from the definition of $\mathrm{E}[\mathrm{X}]$:

$$
\mathbb{E}[X]=(-2)\left(p_{2}^{2}\right)+(-1)\left(2 p_{2} p_{3}\right)+(0)\left(p_{3}^{2}+2 p_{1} p_{2}\right)+(1)\left(2 p_{1} p_{3}\right)+(2)\left(p_{1}^{2}\right)=2\left(p_{1}-p_{2}\right)
$$

Question 8 (c) Solution

Computing $\mathrm{E}[\mathrm{X}]$ again this time but using linearity of expectation:

Let Y be the amount you moved on the first step (either $-1,0,1$), and Z the amount you moved on the second step. Then, $\mathbb{E}[Y]=\mathbb{E}[Z]=(1)\left(p_{1}\right)+(0)\left(p_{3}\right)+(-1)\left(p_{2}\right)=p_{1}-p_{2}$.
Then $X=Y+Z$ and $\mathbb{E}[X]=\mathbb{E}[Y+Z]=\mathbb{E}[Y]+\mathbb{E}[Z]=2\left(p_{1}-p_{2}\right)$

