CSE 312 Section 2 Slides

Made by Leiyi Zhang, Scott Ni and Shreya Jayaraman

Announcements

e Homework 1 due yesterday
e Homework 2 due next Wednesday (1/18) 11:59 pm PST

Review

Some important denotation and definition on your handout
Multinomial
Inclusion-Exclusion: +singles - doubles + triples - quads + ...

New combinatorics concepts
o Pigeonhole
o StarsandBars

Review

Intro to Probability

(Countable Additivity) If E and F are mutually exclusive, then P(EUF) = P(E) +P (F). This
actually holds for any countable (finite or countably infinite) collection of pairwise mutually
exclusive events Ey, Fy, E3,. ...

P (Lj E,-) = f:]P’(E,-)

Corollaries:
1. (Complementation) P (E€) =1 - P(E).
2. (Monotonicity) If E C F, then P (E) < P(F).
3. (Inclusion-Exclusion) P(EUF) =P(E)+P(F)—-P(ENF).

Theorem 2.1.4: Probability in Sample Space with Equally Likely Outcomes

If Q is a sample space such that each of the unique outcome elements in 2 are equally likely, then
for any event £ C Q:

=2

PE) = la]

Question 5: “Count the Solutions”

How many nonnegative integer solutionsto a; +as +az+ a4 +as+ag =70 7?

Stars and Bars

70 indistinguishable balls into 6 bins: let a_i be the number of balls in bini.

Stars and Bars

70 indistinguishable balls into 6 bins: let a_i be the number of balls in bini.

70+6—1\ (75
6—1 kB

Stars and bars

Question 7: “Card Party”

At a card party, someone brings out a deck of bridge cards (4 suits with 13 cards in each). N people each
pick 2 cards from the deck and hold onto them. What is the minimum value of N that guarantees at least 2
people have the same combination of suits?

Pigeonhole principle

We want at least 2 people to have the same combination of suits.
Pigeon:

Pigeonhole:

Pigeonhole principle

We want at least 2 people to have the same combination of suits.
Pigeon: N people

Pigeonhole: ? combination of suits

Pigeonhole principle

Same suit: 4 ways
Different suits: 4C2 = 6 ways
Total: 10 combinations of suits

11 people is enough to guarantee

Question 6: “Spades and Hearts™

Given 3 different spades and 3 different hearts, shuffle them. Compute Pr(E), where E is the event that
the suits of the shuffled cards are in alternating order.

If €2 is a sample space such that each of the unique outcome elements in 2 are equally likely, then
for any event E C ():

_ |E]

P(E) = T

Computing probability in the case of equally likely outcomes reduces to
doing two counting problems (counting |E| and |Q|, where computing |Q] is
generally easier than computing |E|). Just use the techniques from Chapter
1 (Counting) to do this!

-Textbook

Size of sample space: all possible card orderings

6!

Size of sample space: all possible card orderings
6!
Size of event:

3! ways to order spades, 3! ways to order hearts 2 % 312
either hearts at the front or spades at the front)

Size of sample space: all possible card orderings
6!
Size of event:

3! ways to order spades, 3! ways to order hearts
either hearts at the front or spades at the front

2 * 312
6!

Answer :

2 * 312

Alternate solution’

Size of sample space: all possible suits orderings

C(6,3); choose 3 out of the 6 spots for spades

Alternate solution’

Size of sample space: all possible suits orderings
C(6,3); choose 3 out of the 6 spots for spades
Size of event:

2; either hearts at the front or spades at the front

Alternate solution’

Size of sample space: all possible suits orderings
C(6,3); choose 3 out of the 6 spots for spades
Size of event:

2; either hearts at the front or spades at the front

Answer : 2 % 3!2

6!

Make sure that all events are
equally likely

Question 12: “Trick or Treat”

Suppose on Halloween, someone is too lazy to keep answering the
door, and leaves a jar of exactly N total candies. You count that there
are exactly K of them which are kit kats (and the rest are not). The
sign says to please take exactly n candies. Each item is equally likely
to be drawn. Let X be the number of kit kats we draw (out of n). What
is Pr(X = k), that is, the probability we draw exactly k kit kats?

http://www.youtube.com/watch?v=_W0bSen8Qjg

If €2 is a sample space such that each of the unique outcome elements in 2 are equally likely, then
for any event E C ():

E
P(E) = H

Computing probability in the case of equally likely outcomes reduces to
doing two counting problems (counting |E| and |Q|, where computing |Q] is
generally more straightforward than computing |E|). Just use the
techniques from Chapter 1 (Counting) to do this!

-Textbook

Size of Sample Space: the total
number of ways to choose n candies out
of N total.

= T

E|

Pr(X = k) = ~
— n

Size of Sample Space: the total
number of ways to choose n candies out

of N total.

Size of Event: countedintwo —

stages! | E |

Pr(X = k) = ~
—— n

Size of Sample Space: the total
number of ways to choose n

candies out of N total.

Size of Event: counted in two
stages!

Size of Sample Space: the total
number of ways to choose n
candies out of N total.

1. choose k out of
the K kit kats

- (K

k

2. Then choose n - k out of
the N - K other candies

N — K
n —k

N

n

Question 13: “Weighted Die”

Consider a weighted (6-faced) die such that

Pr(5) = Pr(6), and

What is the probability that the outcome is [3 or 4]?

Pr(5) = Pr(6)

the sum of probabilities for the sample space must
equal 1

Pr(5) = Pr(6)

the sum of probabilities for the sample space must
equal 1

Pr(1) + Pr(2) + Pr(3) + Pr(4) + Pr(5) + Pr(6) = 1

Pr(5) = Pr(6)

Use the given equations to substitute everything into
Pr(3):

3Pr(3) + 3Pr(3) + Pr(3) + Pr(3) + Pr(3) + Pr(3) = 10Pr(3) = 1

e Pr(3) =0.1
Pr(3) = Pr(4) = 0.1
Pr(3or4)=Pr(3) + Pr(4)=0.2

The MatPlotLib Library

Plotting A Graph using matplotlib.pyplot

= np.arange(10)
= X *%

z X +

plt.plot(x, y, "b", label="y = xA2", linestyle='-"')

The x and y
coordinates of the Line color. Some
data abbreviations

available, such
as r - red, g -
green, b - blue,
etc.

Label for Lline
in the legend

Line style. ‘-’ gives
a solid line, ¢--’
gives a dashed one,
¢-.’ gives a dash-dot
one, etc.

import matplotlib.pyplot as plt
import numpy as np

X = np.arange(10)

y = X **x 2

Z = S%X K T

plt.plot(x, y, "b", label="y
plE.plot(x; z; YrY; label=tz
plt.legend(loc="upper left")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.title("An Interesting Graph")
plt.savefig('plot.png')

I

xA2", linestyle='-"')
5x + 7", linestyle='-.")

An Interesting Graph

80 A

— y=x“2
— 2= 55X+ 7

Probability by Simulation

P(E)

The long-term limit of probability of an event E occurring in a random experiment

of trials (F)
#trials

> P(F)

A Coin Flip Game

Suppose a weighted coin comes up heads with probability V4.

How many flips do you think it will take for the first head to appear?

Simulating the Coin Flip Game

Returns a single
np.random.rand() —— random float 1in

the range [0, 1)

Simulating the Coin Flip Game

if np.random.rand() < p:

What is this expression
checking?

Since np.random.rand()
returns a random float

between [0, 1), the function
returns a value < p with

probability p.

Simulating the Coin Flip Game

if np.random.rand() < p:

What is this expression
checking?

Since np.random.rand()
returns a random float
between [0, 1), the function
returns a value < p with
probability p.

This allows us to simulate
the event in question: the
first ‘Heads’ appears
whenever rand() returns a
value < p.

And, if rand() >= p, the coin
flip turned up ‘Tails’.

Simulating ONE Coin Flip Game

Counter that keeps
track of number of
def sim_one_game(): coin flips
flips =
while True:

tlips 4= When we “flip a head”, we

return the total number
of times we’ve flipped
the coin.

if np.random.rand() < p: ——
return flips

import numpy as np////////x

def coin_flips(p:float = 1/3, ntrials:int = 5000) -> float:

P(heads)

Helper function<————def sim_one_game() -> int:

simulates one
game

flips = ©
while True:
flips += 1
if np.random.rand() < p:
return flips

total_flips = 0

for i in range(ntrials):
total_flips += sim_one_game()

return total_flips / ntrials

Number of games we want

//////, to simulate

I P(headS)

Number of games we want

import numpy as np////////l //////, to simulate

def coin_flips(p:float = 1/3, ntrials:int

Helper function<————def sim_one_game() -> int:
simulates one
game

flips = ¢
while True:
flips += 1
if np.random.rand() < p:
return flips

total_flips = ©

for i in range(ntrials):
total_flips += sim_one_game()

return total_flips / ntrials

Finally, we return the average # of flips

it took for the first H to appear

= 5000) -> float:

After each game,
adds the total
number of flips
taken.

Slmulatlon

