CSE 312 Section 2 Slides

Made by Leiyi Zhang, Scott Ni and Shreya Jayaraman

Announcements

- Homework 1 due yesterday
- Homework 2 due next Wednesday (1/18) 11:59 pm PST

Review

- Some important denotation and definition on your handout
- Multinomial
- Inclusion-Exclusion: +singles - doubles + triples - quads + ...
- New combinatorics concepts
- Pigeonhole
- Stars and Bars

Review

- Intro to Probability
(Countable Additivity) If E and F are mutually exclusive, then $\mathbb{P}(E \cup F)=\mathbb{P}(E)+\mathbb{P}(F)$. This actually holds for any countable (finite or countably infinite) collection of pairwise mutually exclusive events $E_{1}, E_{2}, E_{3}, \ldots$

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(E_{i}\right)
$$

Corollaries:

1. (Complementation) $\mathbb{P}\left(E^{C}\right)=1-\mathbb{P}(E)$.
2. (Monotonicity) If $E \subseteq F$, then $\mathbb{P}(E) \leq \mathbb{P}(F)$.
3. (Inclusion-Exclusion) $\mathbb{P}(E \cup F)=\mathbb{P}(E)+\mathbb{P}(F)-\mathbb{P}(E \cap F)$.

Theorem 2.1.4: Probability in Sample Space with Equally Likely Outcomes
If Ω is a sample space such that each of the unique outcome elements in Ω are equally likely, then for any event $E \subseteq \Omega$:

$$
\mathbb{P}(E)=\frac{|E|}{|\Omega|}
$$

Question 5: "Count the Solutions"

How many nonnegative integer solutions to $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}=70$

Stars and Bars

70 indistinguishable balls into 6 bins: let a_i be the number of balls in bin i.

Stars and Bars

70 indistinguishable balls into 6 bins: let a_i be the number of balls in bin i.
Stars and bars

$$
\binom{70+6-1}{6-1}=\binom{75}{5}
$$

Question 7: "Card Party"

At a card party, someone brings out a deck of bridge cards (4 suits with 13 cards in each). N people each pick 2 cards from the deck and hold onto them. What is the minimum value of N that guarantees at least 2 people have the same combination of suits?

Pigeonhole principle

We want at least 2 people to have the same combination of suits.

Pigeon:

Pigeonhole:

Pigeonhole principle

We want at least 2 people to have the same combination of suits.
Pigeon: N people

Pigeonhole: ? combination of suits

Pigeonhole principle

Same suit: 4 ways
Different suits: 4C2 = 6 ways

Total: 10 combinations of suits

11 people is enough to guarantee

Question 6: "Spades and Hearts"

Given 3 different spades and 3 different hearts, shuffle them. Compute $\operatorname{Pr}(E)$, where E is the event that the suits of the shuffled cards are in alternating order.

If Ω is a sample space such that each of the unique outcome elements in Ω are equally likely, then for any event $E \subseteq \Omega$:

$$
\mathbb{P}(E)=\frac{|E|}{|\Omega|}
$$

Computing probability in the case of equally likely outcomes reduces to doing two counting problems (counting $|\mathrm{E}|$ and $|\Omega|$, where computing $|\Omega|$ is generally easier than computing $|E|$. Just use the techniques from Chapter 1 (Counting) to do this!
-Textbook

Size of sample space: all possible card orderings
$6!$

Size of sample space: all possible card orderings
$6!$

Size of event:

3 ! ways to order spades, 3 ! ways to order hearts either hearts at the front or spades at the front

Size of sample space: all possible card orderings
$6!$

Size of event:

3 ! ways to order spades, 3 ! ways to order hearts either hearts at the front or spades at the front
Answer: $\frac{2 * 3!^{2}}{6!}$

Alternate solution*

Size of sample space: all possible suits orderings
$C(6,3)$; choose 3 out of the 6 spots for spades

Alternate solution*

Size of sample space: all possible suits orderings
$C(6,3)$; choose 3 out of the 6 spots for spades
Size of event:
2; either hearts at the front or spades at the front

Alternate solution*

Size of sample space: all possible suits orderings
$C(6,3)$; choose 3 out of the 6 spots for spades
Size of event:
Make sure that all events are equally likely

2; either hearts at the front or spades at the front

Answer:
$\frac{2 * 3!^{2}}{6!}$

Question 12: "Trick or Treat"

Suppose on Halloween, someone is too lazy to keep answering the door, and leaves a jar of exactly N total candies. You count that there are exactly K of them which are kit kats (and the rest are not). The sign says to please take exactly n candies. Each item is equally likely to be drawn. Let \boldsymbol{X} be the number of kit kats we draw (out of \boldsymbol{n}). What is $\operatorname{Pr}(X=k)$, that is, the probability we draw exactly k kit kats?

If Ω is a sample space such that each of the unique outcome elements in Ω are equally likely, then for any event $E \subseteq \Omega$:

$$
\mathbb{P}(E)=\frac{|E|}{|\Omega|}
$$

Computing probability in the case of equally likely outcomes reduces to doing two counting problems (counting $|\mathrm{E}|$ and $|\Omega|$, where computing $|\Omega|$ is generally more straightforward than computing $|\mathrm{E}|$). Just use the techniques from Chapter 1 (Counting) to do this!
-Textbook

Size of Event: counted in two stages!

$$
\operatorname{Pr}(X=k)=
$$

Size of Sample Space: the total

Question 13: "Weighted Die"
Consider a weighted (6-faced) die such that

- $\operatorname{Pr}(1)=\operatorname{Pr}(2)$,
- $\operatorname{Pr}(3)=\operatorname{Pr}(4)=\operatorname{Pr}(5)=\operatorname{Pr}(6)$, and
- $\operatorname{Pr}(1)=3 \operatorname{Pr}(3)$.

What is the probability that the outcome is [3 or 4]?

- $\operatorname{Pr}(1)=\operatorname{Pr}(2)$
- $\operatorname{Pr}(3)=\operatorname{Pr}(4)=\operatorname{Pr}(5)=\operatorname{Pr}(6)$
- $\operatorname{Pr}(1)=3 \operatorname{Pr}(3)$
the sum of probabilities for the sample space must equal 1
- $\operatorname{Pr}(1)=\operatorname{Pr}(2)$
- $\operatorname{Pr}(3)=\operatorname{Pr}(4)=\operatorname{Pr}(5)=\operatorname{Pr}(6)$
- $\operatorname{Pr}(1)=3 \operatorname{Pr}(3)$
the sum of probabilities for the sample space must equal 1

$$
\operatorname{Pr}(1)+\operatorname{Pr}(2)+\operatorname{Pr}(3)+\operatorname{Pr}(4)+\operatorname{Pr}(5)+\operatorname{Pr}(6)=1
$$

- $\operatorname{Pr}(1)=\operatorname{Pr}(2)$
- $\operatorname{Pr}(3)=\operatorname{Pr}(4)=\operatorname{Pr}(5)=\operatorname{Pr}(6)$
- $\operatorname{Pr}(1)=3 \operatorname{Pr}(3)$

Use the given equations to substitute everything into $\operatorname{Pr}(3)$:
$3 \operatorname{Pr}(3)+3 \operatorname{Pr}(3)+\operatorname{Pr}(3)+\operatorname{Pr}(3)+\operatorname{Pr}(3)+\operatorname{Pr}(3)=10 \operatorname{Pr}(3)=1$

- $\operatorname{Pr}(3)=0.1$
$\operatorname{Pr}(3)=\operatorname{Pr}(4)=0.1$
- $\operatorname{Pr}(3)=0.1$
$\operatorname{Pr}(3)=\operatorname{Pr}(4)=0.1$
$\operatorname{Pr}(3$ or 4$)=\operatorname{Pr}(3)+\operatorname{Pr}(4)=0.2$

The MatPlotLib Library

Plotting A Graph using matplotlib.pyplot

The x and y coordinates of the data
$\mathrm{x}=\mathrm{np} . \operatorname{arange}(10)$
y $=$ x ** 2
$z=5 * x+7$
plt.plot(x, y, "b", label="y = x^2", linestyle='-')

Line color. Some abbreviations available, such as r - red, g green, b - blue, etc.

Line style. '-' gives a solid line, '--' gives a dashed one, '-.' gives a dash-dot one, etc.

```
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(10)
y = x ** 2
z = 5*x + 7
plt.plot(x, y, "b", label="y = x^2", linestyle='-')
plt.plot(x, z, "r", label="z = 5x + 7", linestyle='-.')
plt.legend(loc="upper left")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.title("An Interesting Graph")
plt.savefig('plot.png')
```


Probability by Simulation

P(E)

The long-term limit of probability of an event E occurring in a random experiment

$$
\frac{\# \text { of trials }(E)}{H+r i a l s} \rightarrow P(E)
$$

A Coin Flip Game

Suppose a weighted coin comes up heads with probability $1 / 3$.

How many flips do you think it will take for the first head to appear?

Simulating the Coin Flip Game

$$
\mathrm{np} \cdot \mathrm{random.rand}() \longrightarrow \begin{aligned}
& \text { Returns a single } \\
& \text { random float in } \\
& \text { the range }[0,1)
\end{aligned}
$$

Simulating the Coin Flip Game

What is this expression checking?

```
if np.random.rand() < p:
```

Since np. random. rand() returns a random float between [0, 1), the function returns a value < p with probability p.

Simulating the Coin Flip Game

```
if np.random.rand() < p:
```

What is this expression checking?

Since np.random. rand() returns a random float between $[0,1)$, the function returns a value < p with probability p.

This allows us to simulate the event in question: the first 'Heads' appears whenever rand() returns a value < p.
And, if rand() >= p, the coin flip turned up 'Tails'.

Simulating ONE Coin Flip Game

```
    Counter that keeps
    track of number of
def sim_one_game():
    flips = 0
    while True:
            flips += 1 When we "flip a head", we
            if np.random.rand() < p: \longrightarrow return the total number
                return flips
```


