
CSE 312: Foundations of Computing II Winter 2023

Section 10

Review

You probably want to look over this review sheet, with the caveat that there are a number of things here that we
have not covered this quarter.

Task 1 – True or False?

a) True or False: The probability of getting 20 heads in 100 independent tosses of a coin that has probability
5/6 of coming up heads is p5{6q20p1{6q80.

b) True or False: Suppose we roll a six-sided fair die twice independently. Then the event that the first roll is
3 and the sum of the two rolls is 6 are independent.

c) True or False: If X and Y are nonnegative, discrete, and independent random variables, then so are X2 and
Y 2.

d) True or False: The central limit theorem requires the random variables to be independent.

e) True or False: Let A, B and C be any three events defined with respect to a probability space. Then
PpAXB X Cq “ PpAXB|CqPpB|CqPpCq.

f) True or False: If you flip a fair coin 1000 times, then the probability that there are 800 heads in total is the
same as the probability that there are 80 heads in the first 100 flips.

g) True or False: If N is a nonnegative integer valued random variable, then
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Task 2 – Short answer

a) Consider a set S containing k distinct integers. What is the smallest k for which S is guaranteed to have 3
numbers that are the same mod 5 (in other words, for every pair of elements a and b in the set S, a mod
5 “ b mod 5)?

b) Let X be a discrete random variable that can only be between -10 and 10. That is, P pX “ xq ě 0 for
´10 ď x ď 10, and P pX “ xq “ 0 otherwise. What is the smallest possible value the variance of X can
take?
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c) How many ways are there to rearrange the letters in the word KNICKKNACK?

d) I toss n balls into n bins uniformly at random. What is the expected number of bins with exactly k balls in
them?

e) Consider a six-sided die where Prp1q “ Prp2q “ Prp3q “ Prp4q “ 1{8 and Prp5q “ Prp6q “ 1{4. Let X
be the random variable which is the square root of the value showing. (For example, if the die shows a 1, X
is 1, if the die shows a 2, X is

?
2, if the die shows a 3, X “

?
3 and so on.) What is the expected value of

X? (Leave your answer in the form of a numerical sum; do not bother simplifying it.)

f) A bus route has interarrival times (the times between subsequent arrivals) at a bus stop that are exponentially
distributed with parameter λ “ 0.05

min . What is the probability of waiting an hour or more for a bus?

g) How many different ways are there to select 3 dozen indistinguishable colored roses if red, yellow, pink, white,
purple and orange roses are available?

h) Two identical 52-card decks are mixed together. How many distinct permutations of the 104 cards are there?

Task 3 – Random boolean formulas

Consider a boolean formula on n variables in 3-CNF, that is, conjunctive normal form with 3 literals per clause.
This means that it is an “and” of “ors”, where each “or” has 3 literals. Each parenthesized expression (i.e., each
“or” of three literals) is called a clause. Here is an example of a boolean formula in 3-CNF, with n “ 6 variables
and m “ 4 clauses.

px1 _ x3 _ x5q ^ p␣x1 _␣x2 _ x6q ^ px5 _␣x3 _ x4q ^ p␣x1 _ x4 _ x5q.

a) What is the probability that p␣x1 _␣x2 _ x3q evaluates to true if variable xi is set to true with probability
pi, independently for all i?

b) Consider a boolean formula in 3-CNF with n variables and m clauses, where the three literals in each clause
refer to distinct variables. What is the expected number of satisfied clauses if each variable is set to true
independently with probability 1/2? A clause is satisfied if it evaluates to true. (In the displayed example
above, if x1, . . . , x5 are set to true and x6 is set to false, then all clauses but the second are satisfied.)

Task 4 – Biased coin flips

We flip a biased coin with probability p of getting heads until we either get heads or we flip the coin three times.
Thus, the possible outcomes of this random experiment are ă H ą,ă T,H ą,ă T, T,H ą and ă T, T, T ą.

a) What is the probability mass function of X, where X is the number of heads. (Notice that X is 1 for the first
three outcomes, and 0 in the last outcome.)

b) What is the probability that the coin is flipped more than once?
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c) Are the events “there is a second flip and it is heads” and “there is a third flip and it is heads” independent?
Justify your answer.

d) Given that we flipped more than once and ended up with heads, what is the probability that we got heads on
the second flip? (No need to simplify your answer.)

Task 5 – Bitcoin users

There is a population of n people. The number of Bitcoin users among these n people is i with probability
pi, where, of course,

ř

0ďiďn pi “ 1. We take a random sample of k people from the population (without
replacement). Use Bayes Theorem to derive an expression for the probability that there are i Bitcoin users in the
population conditioned on the fact that there are j Bitcoin users in the sample. Let Bi be the event that there
are i Bitcoin users in the population and let Sj be the event that there are j Bitcoin users in the sample. Your
answer should be written in terms of the pℓ’s, i, j, n and k. Your answer can contain summation notation.

Task 6 – Investments

You are considering three investments. Investment A yields a return which is X dollars where X is Poisson with
parameter 2. Investment B yields a return of Y dollars where Y is Geometric with parameter 1/2. Investment
C yields a return of Z dollars which is Binomial with parameters n “ 20 and p “ 0.1. The returns of the three
investments are independent.

a) Suppose you invest simultaneously in all three of these possible investments. What is the expected value and
the variance of your total return?

b) Suppose instead that you choose uniformly at random from among the 3 investments (i.e., you choose each
one with probability 1/3). Use the law of total probability to write an expression for the probability that the
return is 10 dollars. Your final expression should contain numbers only. No need to simplify your answer.

Task 7 – Another continuous r.v.

The density function of X is given by

fpxq “

#

a` bx2 when 0 ď x ď 1

0 otherwise.

If ErXs “ 3
5 , find a and b.

Task 8 – Point on a line

A point is chosen at random on a line segment of length L. Interpret this statement (i.e., define the relevant
random variable(s)) and find the probability that the ratio of the shorter to the longer segment is less than 1
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Task 9 – Min and max of i.i.d. random variables

Let X1, X2, . . . , Xn be i.i.d. random variables each with CDF FXpxq and pdf fXpxq. Let Y “ minpX1, . . . , Xnq

and let Z “ maxpX1, . . . , Xnq. Show how to write the CDF and pdf of Y and Z in terms of the functions FXp¨q

and fXp¨q.

Task 10 – CLT example

Let X be the sum of 100 real numbers, and let Y be the same sum, but with each number rounded to the nearest
integer before summing. If the roundoff errors (the difference between a real number and that number rounded
to the nearest integer) are independent and uniformly distributed between -0.5 and 0.5, what is the approximate
probability that |X ´ Y | ą 3?
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Task 11 – Tweets

A prolific twitter user tweets approximately 350 tweets per week. Let’s assume for simplicity that the tweets are
independent, and each consists of a uniformly random number of characters between 10 and 140. (Note that this
is a discrete uniform distribution.) Thus, the central limit theorem (CLT) implies that the number of characters
tweeted by this user is approximately normal with an appropriate mean and variance. Assuming this normal
approximation is correct, estimate the probability that this user tweets between 26,000 and 27,000 characters in
a particular week. (This is a case where continuity correction will make virtually no difference in the answer, but
you should still use it to get into the practice!).

Task 12 – Will I Get My Package

A delivery guy in some company is out delivering n packages to n customers, where n P t2, 3, 4, ...,8u, n ą 1.
Not only does he hand each customer a package uniformly at random from the remaining packages, he opens
the package before delivering it with probability 1

2 . Let X be the number of customers who receive their own
packages unopened.

a) Compute the expectation ErXs.

b) Compute the variance VarpXq.

Task 13 – Subset Card Game

Jonathan and Yiming are playing a card game. The cards have not yet been dealt from the deck to their hands.
This deck has k ą 2 cards, and each card has a real number written on it. In this deck, the sum of the card values
is 0, and that the sum of squares of the values of the cards is 1. Specifically, if the card values are c1, c2, . . . , ck,
then we have

řk
i“1 ci “ 0 and

řk
i“1 c

2
i “ 1.

The cards are then going to be dealt randomly in the following fashion: for each card in the deck, a fair coin
is flipped. If the coin lands heads, then the card goes to Yiming, and if the coin lands tails, the card goes to
Jonathan. Note that it is possible for either player to end up with no cards/all the cards.

Calculate ErSs and VarpSq, where S is the sum of value of cards in Yiming’s hand (where an empty hand
corresponds to a sum of 0). The answer should not include a summation.

Task 14 – Random Variables Warm-Up

[Credit: Berkeley CS 70] Let X and Y be random variables, each taking values in the set {0,1,2}, with joint
distribution

PrX “ 0, Y “ 0s “ 1{3 PrX “ 0, Y “ 1s “ 0 PrX “ 0, Y “ 2s “ 1{3

PrX “ 1, Y “ 0s “ 0 PrX “ 1, Y “ 1s “ 1{9 PrX “ 1, Y “ 2s “ 0

PrX “ 2, Y “ 0s “ 1{9 PrX “ 2, Y “ 1s “ 1{9 PrX “ 2, Y “ 2s “ 0

a) What are the marginal distributions of X and Y ?

b) What are ErXs and ErY s?

c) Let I be the indicator that X “ 1, and J be the indicator that Y “ 1. What are ErIs, ErJs and ErIJs?

d) In general, let IA and IB be the indicators for events A and B in a probability space (Ω, P). What is ErIAIBs,
in terms of the probability of some event?
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Task 15 – Committees

Consider a group of n people consisting of k ą 6 left-handed people and n ´ k right-handed people. Suppose
we toss a coin that has probability p of coming up heads. If it comes up heads, we select 3 people out of the n
people, uniformly at random, to be on a committee. If it comes up tails, we select k ´ 3 people out of the n,
again uniformly at random, to be on the committee. What is the probability that the committee consists entirely
of left-handed people? No need to simplify your answer. Just circle your final answer.

Task 16 – Balls in bins

Suppose that 100 distinct balls are thrown independently and uniformly at random into 100 distinct bins. What
is the probability that bin 1 has 5 balls in it given that bin 2 has 3 balls in it? No need to simplify your answer.
Just circle your final answer.

Task 17 – Linearity of Expectation

Every minute, a random word generator spits out one word uniformly at random from the 3-word set { I , love,
to}. The word spit out is independent of words spit out at other times. If we let the generator run for n minutes,
what is the expected number of times that the phrase “I love to love” appears? No need to simplify your answer.
Just circle your final answer.

Task 18 – Joint Distributions

a) Give an example of discrete random variables X and Y with the property that ErXY s ‰ ErXsErY s. Specify
the joint distribution of X and Y .

b) Give an example of discrete random variables X and Y that (i) are not independent and (ii) have the property
that ErXY s “ 0,ErXs “ 0,ErY s “ 0. Again, specify the joint distribution of X and Y .
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