CSE 312 Section 1

Welcome :)

Turn to your neighbor and introduce yourself:

- Name and pronouns
- Year
- What other classes are you taking this quarter
- Something fun you did over winter break

Awesome resources

- Textbook
- Section problems
- Definitions and Theorems Sheet
- EdStem/OH (to not only ask your own questions but hear others)

Review

- Sum Rule: no overlap in outcomes
- Product Rule: counting choices in stages
- Permutation: Ordering of N Distinct Objects: N!
- k-Permutation: Ordering k of n Distinct Objects:

$$
\frac{n!}{(n-k)!}
$$

$P(n, k)$

- $\begin{aligned} & \text { k-Combination: Choosing } \mathrm{k} \text { of } \mathrm{n} \text { Distinct Objects } \\ & \text { (order does not matter) : } \mathrm{C}(\mathrm{n}, \mathrm{k})\end{aligned}\binom{n}{k}=\frac{n!}{k!(n-k)!}, ~$

Review

- Complementary counting: total - opposite
- Binomial Theorem: $\forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}:(x+y)^{n}=\sum_{k=0}^{n}\left(\begin{array}{l}n \\ k\end{array} x^{k} y^{n-k}\right.$

Question 3: "Seating"

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if ...
(a) . . . all couples are to get adjacent seats?
(b) . . . anyone can sit anywhere, except that one couple insists on not sitting in adjacent seats?

Question 3: "Seating"

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if . . .
(a) . . . all couples are to get adjacent seats?

Question 3: "Seating"

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if . . .
(a) . . . all couples are to get adjacent seats?

- There are 5 ! permutations of the 5 couples, and then 2 permutations within each of the 5 couples

Question 3: "Seating"

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if . . .
(a) . . . all couples are to get adjacent seats?

- There are 5 ! permutations of the 5 couples, and then 2 permutations within each of the 5 couples
Answer: 5! * 2^{5} (By Product Rule)

Question 3: "Seating"

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if . . .
(b) . . . anyone can sit anywhere, except that one couple insists on not sitting in adjacent seats?

Question 3: "Seating"

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if . . .
(b) . . . anyone can sit anywhere, except that one couple insists on not sitting in adjacent seats?

Let's break it down!

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if . . .
(b) . . . anyone can sit anywhere, except that one couple insists on not sitting in adjacent seats?

- The number of ways to arrange 10 people in 10 seats without any restrictions is: 10 !

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if ...
(b) . . . anyone can sit anywhere, except that one couple insists on not sitting in adjacent seats?

- The number of ways to arrange 10 people in 10 seats without any restrictions is: 10!
- Then, we can treat that couple as a "ninth unit" added to the other 8 individuals, and then there are 2 ! ways to arrange that two people within their unit. Thus, the number of ways to rearrange people so that that couple will sit in adjacent seats is: 9 ! ${ }^{*} 2$!

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if ...
(b) . . . anyone can sit anywhere, except that one couple insists on not sitting in adjacent seats?

- The number of ways to arrange 10 people in 10 seats without any restrictions is: 10!
- Then, we can treat that couple as a "ninth unit" added to the other 8 individuals, and then there are 2 ! ways to arrange that two people within their unit. Thus, the number of ways to rearrange people so that that couple will sit in adjacent seats is: 9 ! * 2 !
- Finally, by using the method of "Complements", we ge $10!-9!* 2=8 * 9$!

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if . . .
(b) . . . anyone can sit anywhere, except that one couple insists on not sitting in adjacent seats?

Alternatively:

- Name the two people in the couple A and B. There are two cases:

O A can sit on one of the ends, or not. If A sits on an end seat, A has 2 choices and B has 8 possible seats.

O If A doesn't sit on the end, A has 8 choices and B only has 7 .

- So there are a total of $2 \cdot 8+8.7$ ways A and B can sit. Once they do, the other 8 people can sit in 8 ! ways since there are no other restrictions.

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if ...
(b) . . . anyone can sit anywhere, except that one couple insists on not sitting in adjacent seats?

Alternatively:

- Name the two people in the couple A and B. There are two cases:

O A can sit on one of the ends, or not. If A sits on an end seat, A has 2 choices and B has 8 possible seats.

O If A doesn't sit on the end, A has 8 choices and B only has 7 .

- So there are a total of $2 \cdot 8+8.7$ ways A and B can sit. Once they do, the other 8 people can sit in 8 ! ways since there are no other restrictions.

Answer:

$$
(2 * 8+8 * 7) 8!=9 * 8 * 8!=8 * 9!
$$

Question 6 : "Escape the Professor"

There are 6 security professors and 7 theory professors taking part in an escape room. If 4 security professors and 4 theory professors are chosen and paired off, how many pairings (security-theory) are possible?

- Number of ways to choose 4 security professors from $6\binom{6}{4}$
- Number of ways to choose 4 theory professors from $7\binom{7}{4}$
- Then assign each theory professor to a security professor (4 choices for the first, 3 for the second and so on)
- With the product rule, we get $\binom{6}{4}\binom{7}{4} 4$!

Question 9: "Photographs"

Suppose that 8 people, including you and a friend, line up for a picture. In how many ways can the photographer organize the line if she wants to have fewer than 2 people between you and your friend?

Question 9: "Photographs"

8 people line up for a picture - how many ways to have <2 people between you and your friend?

There are 2 possible ways to have <2 people between you and your friend: case 1, there are 0 people in between, and case 2 , there is exactly 1 person in between.

Since these 2 cases have no overlap, we can use the sum rule.

Question 9: "Photographs"

8 people line up for a picture - how many ways to have <2 people between you and your friend?

Case 1, there are 0 people in between you and your friend.

Then, we have 7 units to arrange: the 6 other people +1 unit of you and your friend together. There are 7 ! ways to arrange 7 distinct units.

Then, within the unit of you and your friend, there are 2! possible arrangements.

This gives a total of 7 ! * 2 arrangements for case 1.

Question 9: "Photographs"

8 people line up for a picture - how many ways to have <2 people between you and your friend?

Case 2, there is exactly 1 person in between you and your friend.

First, choose the person in between: there are 6 possible choices.
Then, consider you, your friend and that person as a unit. There are 6 distinct units to arrange, in 6! possible ways.
Finally, within the trio unit, the position of the person in between is fixed. Then, there are 2 ! ways to arrange the trio.
This gives a total of 6 * 6 ! * 2 ! arrangements.

Question 9: "Photographs"

8 people line up for a picture - how many ways to have <2 people between you and your friend?

Case 1, there are 0 people in between you and your friend => 7 ! * 2 arrangements

Case 2, there is 1 person in between you and your friend => 6 * 6! * 2! Arrangements

By the sum rule, there are 7 ! * $2+6$ * 6 ! * 2 possible line-ups.

Questions?

