
CSE 312: Foundations of Computing II Winter 2023

Problem Set 8
Due: Wednesday, March 8, by 11:59pm (except for extra credit – see below).

Instructions

Solutions format and late policy. See PSet 1 for further details. The same requirements and policies still apply.
Also follow the typesetting instructions from the prior PSets.

Collaboration policy. The written problems (Tasks 1-6) on this pset may be done with a single partner. In this
case, only one person will submit the written part on Gradescope and add their partner as a collaborator. You
must do Task 8 on your own. Task 9 is an extra credit coding (plus written) problem, which you must do on your
own if you choose to do it.

Solutions submission. You must submit your solution via Gradescope. In particular:

- For the solutions to Tasks 1-6, submit under “PSet 8 [Written]” a single PDF file containing the solutions
to Tasks 1-6 (for you and your partner). Each numbered task should be solved on its own page (or pages).
Follow the prompt on Gradescope to link tasks to your pages. Do not write your names on the individual
pages – Gradescope will handle that.

- Task 7 is purely optional and will not be graded, so no need to submit.

- For the programming part (Task 8), submit your code under “PSet 8 [Coding]” as a file called min.hash.py.

- Task 9 is an extra credit problem that includes coding and some written questions. If you do this part,
submit it under “PSet 8 [Extra Credit – Knapsack]”. Task 9 is due Saturday, March 11 by 11:59pm. (Note
that Tasks 1-6 and task 8 are due Wednesday, March 8 by 11:59pm.

Task 1 – Practice with conditional expectation [10 pts]

Suppose X and Y have the following joint PMF:

X/Y 1 2 3
0 1/4 3/16 1/16
1 1/8 0 3/8

a) (3 points) what is P pX “ 1 | Y “ 2q?

b) (3 points) What is E rX | Y “ 2s?

c) (4 points) What is

E
„

X

Y

ˇ

ˇ

ˇ
X2 ` Y 2 ď 4

ȷ

?

Use the fact that if events A1, . . . , An partition an event A, then

E rF | As “

n
ÿ

i“1

E rF | AisP pAi | Aq “
1

P pAq

n
ÿ

i“1

E rF | AisP pAiq

for any random variable F .

1

Task 2 – TA positions [15 pts]

12 students have decided to apply for a TA position next quarter. The number of courses that they can be a TA
for is a Poisson random variable with mean 5. Suppose that each student independently chooses exactly one of
the courses to apply for uniformly at random (and independently of the choices of the other applicants). Suppose
also that each student has probability 0.2 of being acceptable as a TA to the professor teaching any course they
apply for. Use the law of total expectation to compute the expected number of courses that have at least one
applicant acceptable to the professor for that course.

Task 3 – Lazy Grader [12 pts]

Prof. Lazy decides to assign final grades in CSE 312 by ignoring all the work the students have done and instead
using the following probabilistic method: each student independently will be assigned an A with probability θ, a
B with probability 3θ, a C with probability 2

3 , and an F with probability 1
3 ´ 4θ. When the quarter is over, you

discover that only 10 students got an A, 35 got a B, 40 got a C, and 15 got an F.

Find the maximum likelihood estimate for the parameter θ that Prof. Lazy used. Give an exact answer as a
simplified fraction. You do not need to check second order conditions.

Task 4 – Continuous MLE [24 pts]

You do not need to check second order conditions in the following.

a) Let x1, x2, . . . , xn be independent samples from an exponential distribution with unknown parameter λ. What
is the maximum likelihood estimator for λ?

b) Given θ ą 0. Suppose that x1, . . . , xn are i.i.d. realizations (aka samples) from the model

fpx; θq “

#

θxθ´1 0 ă x ă 1

0 otherwise.

Find the maximum likelihood estimate for θ.

Task 5 – Elections [14 pts]

Individuals in a certain country are voting in an election between 3 candidates: A, B and C. Suppose that each
person makes their choice independent of others and votes for candidate A with probability θ1, for candidate B
with probability θ2 and for candidate C with probability 1 ´ θ1 ´ θ2. (Thus, 0 ď θ1 ` θ2 ď 1.) The parameters
θ1, θ2 are unknown.
Let nA, nB , and nC be the number of votes for candidate A, B, and C, respectively. What are the maximum
likelihood estimates for θ1 and θ2 in terms of nA, nB , and nC?
(You don’t need to check second order conditions.)

Task 6 – (Un)biased Estimation [10 pts]

Let x1, . . . , xn be independent samples from Unifp0, θq, the continuous uniform distribution on r0, θs. Then,

consider the estimator θ̂first “ 2x1, i.e., our estimator ignores the samples x2, . . . , xn and just outputs twice the
value of the first sample.
Is θ̂first unbiased?

2

Task 7 – Covariance – extra problem for your benefit only [0 pts]

We have unfortunately run out of time to cover the important concept of covariance. If you’d like to get ahead
of the game, we highly recommend doing this problem. But it will NOT be graded. Solutions will be posted
though.

Note that some portions of this problem are covered in Section 5.3 of the book. For any two random variables
X,Y the covariance is defined as

Cov pX,Y q “ E rpX ´ E rXsqpY ´ E rY sqs .

In this problem, if you prefer, you may assume that X and Y are discrete random variables.

a) (3 points) Show that
Cov pX,Y q “ E rXY s ´ E rXsE rY s .

b) (3 points) Show that for any two random variables

VarpX ` Y q “ VarpXq ` VarpY q ` 2Cov pX,Y q .

c) (3 points) If E rY |X “ xs “ x for all x, show that Cov pX,Y q “ VarpXq.

d) (3 points) If X,Y are independent, show that Cov pX,Y q “ 0.

e) (3 points) If X and Y have Cov pX,Y q ą 0, we say that X and Y are positively correlated. If Cov pX,Y q ă 0,
we say that X and Y are negatively correlated. Suppose that ΩX “ t0, 1u, ΩY “ t0, 1u and ΩX,Y “

tp0, 0q, p0, 1q, p1, 0q, p1, 1qu. Give a valid joint probability mass function for X and Y for which X and Y are
positively correlated. Then give a different joint probability mass function for X and Y (same ranges) for
which X and Y are negatively correlated.

3

Task 8 – Distinct Elements [20 pts]

Recall the setup for the MinHash algorithm presented in class. The universe of is the set U (think of this as
the set of all 8-byte integers), and we have a single uniform hash function h : U Ñ r0, 1s. That is, for an
integer y, pretend hpyq is a continuous Unifp0, 1q random variable. That is, hpx1q, hpx2q, ..., hpxN q for any N
distinct elements are iid continuous Unifp0, 1q random variables, but since the hash function always gives the
same output for some given input, if, for example, the i-th user ID, xi, and the j-th user ID, xj , are the same,
then hpxiq “ hpxjq (i.e., they are the “same” Unifp0, 1q random variable).

Then, the MinHash algorithm is realized by the following pseudocode, which explains its two key functions:

1. UPDATE(x): How to update your variable when you see a new stream element.

2. ESTIMATE(): At any given time, how to estimate the number of distinct elements you’ve seen so far.

Note that this differs from the syntax used on the slides, but captures the same algorithm.

MinHash Operations

function initialize()
val Ð 8

function update(x)
val Ð min tval, hpxqu

function estimate() return round
`

1
val ´ 1

˘

for i “ 1, . . . , N : do Ź Loop through all stream elements
updatepxiq Ź Update our single float variable

return estimatepq Ź An estimate for n, the number of distinct elements.

To help you out with the following questions, we have set up an edstem lesson. However, you are required to
upload your final solution to Gradescope (see instructions above).

a) Implement the functions UPDATE and ESTIMATE in the MinHash class of min hash.py.

b) The estimator we used in a) has high variance, and therefore it may not always give good answer. As outlined
in class, we improve this by considering k variables

val1, val2, . . . , valk

where each of vali, 1 ď i ď k is an i.i.d. random variable with the distribution of the minimum of m ď N
independent Unifp0, 1q variables, obtained by hashing the N elements in the stream with independent hash
functions h1, . . . , hk. Our final estimate will then be

n̂ “
1

xval
´ 1 where xval “

1

k

k
ÿ

i“1

vali.

Implement the functions UPDATE and ESTIMATE in the MultMinHash class of min hash.py using the
improved estimator.

Refer to Section 9.5 of the book for more details on the distinct elements algorithm.

4

https://edstem.org/us/courses/32027/lessons/51251/slides/320102
https://edstem.org/us/courses/32027/lessons/51251
https://edstem.org/us/courses/32027/lessons/51251
https://courses.cs.washington.edu/courses/cse312/22au/files/Prob_Stat_for_CS_Book.pdf

Task 9 – Extra Credit: Knapsacks (Coding) [28 pts]

This problem is due Saturday, March 11 by 11:59pm.

Markov Chain Monte Carlo (MCMC) is a technique that can be used to heuristically and approximately solve
otherwise hard optimization problems (among other things). We will be talking about Markov chains on Friday,
March 3 (and possibly also on Monday, March 6). If you want to do this extra credit problem, you will need to
read Section 9.6 of the book.
Having said that, the general strategy of the MCMC technique is as follows:

1. Define a Markov Chain with states being possible solutions, and (implicitly defined) transition probabilities
that result in the stationary distribution π having higher probabilities on “good” solutions to our problem.
We don’t actually compute π, but we just want to define the Markov Chain such that the stationary
distribution would have higher probabilities on more desirable solutions.

2. Run MCMC, i.e., simulate the Markov Chain for many iterations until we reach a “good” state/solution.

In this question, there is a collection of n items, numbered 0 to n´1, available to us, and each has some value and
some weight, both of which are positive real values. We want to find the optimal subset of items that maximizes
the total value (the sum of the values of the items we take), subject to the total weight (the sum of the weights
of the items we take) being less than some W ą 0. (This is known as the knapsack problem). In items.txt,
you’ll find a list of potential items with each row containing the name of the item (string), and its value and
weight (positive floats).
You will implement an MCMC algorithm which also depends on a parameter T that is not part of the problem
definition. Pseudocode is provided below, and a detailed explanation is provided immediately after.

Algorithm 1 MCMC for 0-1 Knapsack Problem

1: subset Ð vector of n zeros (indexed by 0 to n ´ 1), where subset is always a binary vector in t0, 1un that
represents whether or not we have each item. (This means that we initially start with an empty knapsack).

2: best subset Ð subset
3: for t “ 1, . . . ,NUM ITER do
4: k Ð a uniformly random integer in t0, 1, . . . , n ´ 1u.
5: new subset Ð subset but with subsetrks flipped (0 Ñ 1 or 1 Ñ 0).
6: ∆ Ð valuepnew subsetq ´ valuepsubsetq
7: if new subset satisfies weight constraint (total weight ď W) then
8: if ∆ ą 0 OR (T ą 0 AND Unifp0, 1q ă e∆{T) then
9: subset Ð new subset

10: if valuepsubsetq ą valuepbest subsetq then
11: best subset Ð subset

The extra parameter T in the MCMC algorithm represents a “temperature” that controls the trade-off between
exploration and exploitation. The state space S is the set of all subsets of n items. The algorithm starts with
a state (current subset) corresponding to an empty knapsack. At each iteration, the algorithm proposes a new
state (proposed subset) as follows: choose a random index k from t0, 1, . . . , n ´ 1u. If the item k is not already
in the knapsack (current subset), then this proposed subset will just add item k, but if item k is already in the
knapsack (current subset), the proposed subset will just remove item k from the knapsack (current subset).

- If the proposed subset is infeasible (doesn’t fit in our knapsack because of the weight constraint), we return
to the start of the loop and abandon the newly proposed subset.

- Suppose that the proposed subset is feasible. If the proposed subset has higher total value (is better) than
the current subset, we will always transition to it (exploitation). Otherwise, if it is worse and T ą 0, with
probability e∆{T , we update the current subset to the proposed subset, where ∆ ă 0 is the decrease in
total value. This allows us to transition to a “worse” subset occasionally (exploration), and get out of local

5

https://courses.cs.washington.edu/courses/cse312/22au/files/Prob_Stat_for_CS_Book.pdf

optima! Repeat this for NUM ITER transitions from the initial state (subset), and output the highest value
subset found during the entire process (which may not be the final subset).

a) What is the size of the Markov Chain’s state space S (the number of possible subsets)?

b) Let’s try to figure out what the temperature parameter T does.

A. Suppose that T “ 0. Will we ever get to a worse subset than before as we transition?

B. Suppose that T ą 0.

i. For a fixed T , does the probability of transitioning to a worse subset increase or decrease with larger
absolute values of ∆ (larger absolute values means “more negative” values, since ∆ ă 0)?

ii. For a fixed ∆, does the probability of transitioning to a worse subset increase or decrease with larger
values of T?

iii. Explain briefly how the temperature parameter T controls the degree of exploration we do.

c) Implement the functions value, weight, and mcmc in mcmc knapsack.py. To this end, you will use the
edstem lesson. Remember that only code submitted via Gradescope will be graded.

Hints: To get full score, you must use np.random.rand() to generate an uniform value in r0, 1s, and
np.random.randint(low (inclusive), high (exclusive)) to generate your random index(es). Make sure to read
the documentation and hints provided!

One item that is not required or graded that we’ve included in the lesson for your interest is that we have
called the make plot function to make a plot where the x-axis is the iteration number, and the y-axis is the
current knapsack value (not necessarily the current best), for ntrials=10 different runs of MCMC. The plots yield
interesting phenomena - for example one can imagine tuning things to choose T that will most reliably produce
high knapsack values.

6

https://edstem.org/us/courses/32027/lessons/51263/slides/287027

