CSE 312

Foundations of Computing II

Lecture 19: Joint Distributions
Agenda

• Joint Distributions
 – Cartesian Products
 – Joint PMFs and Joint Range
 – Marginal Distribution
• Conditional Expectation and Law of Total Expectation
• Conditional expectation and LTE for continuous RVs
• Covariance
Why joint distributions?

• Given all of its user’s ratings for different movies, and any preferences you have expressed, Netflix wants to recommend a new movie for you.

• Given a large amount of medical data correlating symptoms and personal history with diseases, predict what is ailing a person with a particular medical history and set of symptoms.

• Given current traffic, pedestrian locations, weather, lights, etc. decide whether a self-driving car should slow down or come to a stop.
Review Cartesian Product

Definition. Let A and B be sets. The **Cartesian product** of A and B is denoted

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

Example.

$$\{1, 2, 3\} \times \{4, 5\} = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)\}$$

If A and B are finite sets, then $|A \times B| = |A| \cdot |B|$.

The sets don’t need to be finite! You can have $\mathbb{R} \times \mathbb{R}$ (often denoted \mathbb{R}^2)
Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The **Joint PMF** of X and Y is

$$p_{X,Y}(a, b) = P(X = a, Y = b)$$

Definition. The **joint range** of $p_{X,Y}$ is

$$\Omega_{X,Y} = \{(c, d) : p_{X,Y}(c, d) > 0\} \subseteq \Omega_X \times \Omega_Y$$

Note that

$$\sum_{(s, t) \in \Omega_{X,Y}} p_{X,Y}(s, t) = 1$$
Example – Weird Dice

Suppose I roll two fair 4-sided die independently. Let \(X \) be the value of the first die, and \(Y \) be the value of the second die.

\[\Omega_X = \{1,2,3,4\} \text{ and } \Omega_Y = \{1,2,3,4\} \]

In this problem, the joint PMF is if

\[
p_{X,Y}(x,y) = \begin{cases}
1/16 & \text{if } x, y \in \Omega_{X,Y} \\
0 & \text{otherwise}
\end{cases}
\]

and the joint range is (since all combinations have non-zero probability)

\[\Omega_{X,Y} = \Omega_X \times \Omega_Y \]
Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$

$\Omega_U = \{1, 2, 3, 4\}$ and $\Omega_W = \{1, 2, 3, 4\}$

$\Omega_{U,W} = \{(u, w) \in \Omega_U \times \Omega_W : u \leq w \} \neq \Omega_U \times \Omega_W$

Poll: pollev.com/rachel312

What is $p_{U,W}(1, 3) = P(U = 1, W = 3)$?

a. $\frac{1}{16}$

b. $\frac{2}{16}$

c. $\frac{1}{2}$

d. Not sure
Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$

$\Omega_U = \{1,2,3,4\}$ and $\Omega_W = \{1,2,3,4\}$

$\Omega_{U,W} = \{(u, w) \in \Omega_U \times \Omega_W : u \leq w \} \neq \Omega_U \times \Omega_W$

The joint PMF $p_{U,W}(u, w) = P(U = u, W = w)$ is

$p_{U,W}(u, w) = \begin{cases}
2/16 & \text{if } (u, w) \in \Omega_U \times \Omega_W \text{ where } w > u \\
1/16 & \text{if } (u, w) \in \Omega_U \times \Omega_W \text{ where } w = u \\
0 & \text{otherwise}
\end{cases}$

<table>
<thead>
<tr>
<th>u</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/16</td>
<td>2/16</td>
<td>2/16</td>
<td>2/16</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1/16</td>
<td>2/16</td>
<td>2/16</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1/16</td>
<td>2/16</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/16</td>
</tr>
</tbody>
</table>
Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$

Suppose we didn’t know how to compute $P(U = u)$ directly. Can we figure it out if we know $p_{u, w}(u, w)$?

Just apply LTP over the possible values of W:

<table>
<thead>
<tr>
<th>u</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/16</td>
<td>2/16</td>
<td>2/16</td>
<td>2/16</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1/16</td>
<td>2/16</td>
<td>2/16</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1/16</td>
<td>2/16</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/16</td>
</tr>
</tbody>
</table>

$p_U(1) = 7/16$

$p_U(2) = 5/16$

$p_U(3) = 3/16$

$p_U(4) = 1/16$
Definition. Let X and Y be discrete random variables and $p_{X,Y}(a,b)$ their joint PMF. The \textbf{marginal PMF} of X

$$p_X(a) = \sum_{b \in \Omega_Y} p_{X,Y}(a,b)$$

Similarly, $p_Y(b) = \sum_{a \in \Omega_X} p_{X,Y}(a,b)$
Continuous distributions on $\mathbb{R} \times \mathbb{R}$

Definition. The joint probability density function (PDF) of continuous random variables X and Y is a function $f_{X,Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

- $f_{X,Y}(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx \, dy = 1$

for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_{A} f_{X,Y}(x, y) \, dx \, dy$

The (marginal) PDFs f_X and f_Y are given by

- $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy$
- $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx$
Independence and joint distributions

Definition. Discrete random variables X and Y are independent iff
• $p_{X,Y}(x, y) = p_X(x) \cdot p_Y(y)$ for all $x \in \Omega_X, y \in \Omega_Y$

Definition. Continuous random variables X and Y are independent iff
• $f_{X,Y}(x, y) = f_X(x) \cdot f_Y(y)$ for all $x, y \in \mathbb{R}$
Example – Uniform distribution on a unit disk

Suppose that a pair of random variables \((X, Y)\) is chosen uniformly from the set of real points \((x, y)\) such that \(x^2 + y^2 \leq 1\).

This is a disk of radius 1 which has area \(\pi\).

\[
f_{X,Y}(x, y) =
\begin{cases}
\frac{1}{\pi} & \text{if } x^2 + y^2 \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

Poll: pollev.com/rachel312

Are \(X\) and \(Y\) independent?

a. Yes
b. No

\[
f_X(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy
= 2\sqrt{1 - x^2}/\pi
\]
Joint Expectation

Definition. Let X and Y be discrete random variables and $p_{X,Y}(a, b)$ their joint PMF. The **expectation** of some function $g(x, y)$ with inputs X and Y

$$\mathbb{E}[g(X, Y)] = \sum_{a \in \Omega_X} \sum_{b \in \Omega_Y} g(a, b) \cdot p_{X,Y}(a, b)$$
Agenda

• Joint Distributions
 – Cartesian Products
 – Joint PMFs and Joint Range
 – Marginal Distribution
• Conditional Expectation and Law of Total Expectation
• Conditional expectation and LTE for continuous RVs
• Covariance
Conditional Expectation

Definition. Let X be a discrete random variable then the **conditional expectation** of X given event A is

$$
\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid A)
$$

Notes:

- Can be phrased as a “random variable version”
 $$
 \mathbb{E}[X \mid Y = y]
 $$

- Linearity of expectation still applies here
 $$
 \mathbb{E}[aX + bY + c \mid A] = a \mathbb{E}[X \mid A] + b \mathbb{E}[Y \mid A] + c
 $$
Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_1, \ldots, A_n partition the sample space. Then,

$$
\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X | A_i] \cdot P(A_i)
$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$
\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X | Y = y] \cdot P(Y = y)
$$
Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

\[
\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x)
\]

\[
= \sum_{x \in \Omega_X} x \cdot \sum_{i=1}^{n} P(X = x | A_i) \cdot P(A_i)
\]

(by LTP)

\[
= \sum_{i=1}^{n} P(A_i) \sum_{x \in \Omega_X} x \cdot P(X = x | A_i)
\]

(change order of sums)

\[
= \sum_{i=1}^{n} P(A_i) \cdot \mathbb{E}[X | A_i]
\]

(def of cond. expect.)
Example – Flipping a Random Number of Coins

Suppose someone gave us $Y \sim \text{Poi}(5)$ fair coins and we wanted to compute the expected number of heads X from flipping those coins.

By the Law of Total Expectation

$$
\mathbb{E}[X] = \sum_{i=0}^{\infty} \mathbb{E}[X \mid Y = i] \cdot P(Y = i) = \sum_{i=0}^{\infty} \frac{i}{2} \cdot P(Y = i)
$$

$$
= \frac{1}{2} \cdot \sum_{i=0}^{\infty} i \cdot P(Y = i)
$$

$$
= \frac{1}{2} \cdot \mathbb{E}[Y] = \frac{1}{2} \cdot 5 = 2.5
$$
Example – Computer Failures (a familiar example)

Suppose your computer operates in a sequence of steps, and that at each step \(i \) your computer will fail with probability \(p \) (independently of other steps). Let \(X \) be the number of steps it takes your computer to fail.

What is \(\mathbb{E}[X] \)?

Let \(Y \) be the indicator random variable for the event of failure in step 1

Then by LTE,

\[
\mathbb{E}[X] = \mathbb{E}[X | Y = 1] \cdot P(Y = 1) + \mathbb{E}[X | Y = 0] \cdot P(Y = 0)
\]

\[
= 1 \cdot p + \mathbb{E}[X | Y = 0] \cdot (1 - p)
\]

\[
= p + (1 + \mathbb{E}[X]) \cdot (1 - p)
\]

since if \(Y = 0 \) experiment starting at step 2 looks like original experiment

Solving we get \(\mathbb{E}[X] = 1/p \)
Agenda

• Joint Distributions
 – Cartesian Products
 – Joint PMFs and Joint Range
 – Marginal Distribution
• Conditional Expectation and Law of Total Expectation
• Conditional expectation and LTE for continuous RVs
• Covariance
Conditional Expectation again...

Definition. Let X be a discrete random variable; then the **conditional expectation** of X given event A is

$$
\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid A)
$$

Therefore for X and Y discrete random variables, the conditional expectation of X given $Y = y$ is

$$
\mathbb{E}[X \mid Y = y] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid Y = y) = \sum_{x \in \Omega_X} x \cdot p_{X \mid Y}(x \mid y)
$$

where we define $p_{X \mid Y}(x \mid y) = P(X = x \mid Y = y) = \frac{p_{X,Y}(x, y)}{p_Y(y)}$
Conditional Expectation – Discrete & Continuous

Discrete: Conditional PMF: \(p_{X|Y}(x|y) = \frac{p_{X,Y}(x, y)}{p_Y(y)} \)

Conditional Expectation: \(\mathbb{E}[X \mid Y = y] = \sum_{x \in \Omega_x} x \cdot p_{X|Y}(x|y) \)

Continuous: Conditional PDF: \(f_{X|Y}(x|y) = \frac{f_{X,Y}(x, y)}{f_Y(y)} \)

Conditional Expectation: \(\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) \, dx \)
Law of Total Expectation - continuous

Law of Total Expectation (event version). Let X be a random variable and let events $A_1, ..., A_n$ partition the sample space. Then,

$$
\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid A_i] \cdot P(A_i)
$$

Law of Total Expectation (random variable version). Let X and Y be continuous random variables. Then,

$$
\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathbb{E}[X \mid Y = y] \cdot f_Y(y) \, dy
$$
Using LTE for Continuous RVs

Suppose that we first choose \(Y \sim \text{Exp}(1/2) \) and then choose \(X \sim \text{Exp}(Y) \). What is \(\mathbb{E}[X] \)?

PDF for \(\text{Exp}(\lambda) \) is

\[
\begin{cases}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & \text{o.w.}
\end{cases}
\]

Expectation is \(1/\lambda \)

\[
f_{X|Y}(x|y) = y \ e^{-x/y}
\]

\[
\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) \, dx = \int_{-\infty}^{\infty} x \cdot y \ e^{-x/y} \, dx = y
\]

\[
\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathbb{E}[X \mid Y = y] \, f_Y(y) \, dy = \int_{-\infty}^{\infty} y \cdot 2 \ e^{-y/2} \, dx = 2
\]
<table>
<thead>
<tr>
<th></th>
<th>Discrete</th>
<th>Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint PMF/PDF</td>
<td>$p_{X,Y}(x, y) = P(X = x, Y = y)$</td>
<td>$f_{X,Y}(x, y) \neq P(X = x, Y = y)$</td>
</tr>
<tr>
<td>Joint CDF</td>
<td>$F_{X,Y}(x, y) = \sum_{t \leq x} \sum_{s \leq y} p_{X,Y}(t, s)$</td>
<td>$F_{X,Y}(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t, s) ds dt$</td>
</tr>
<tr>
<td>Normalization</td>
<td>$\sum_{x} \sum_{y} p_{X,Y}(x, y) = 1$</td>
<td>$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx dy = 1$</td>
</tr>
<tr>
<td>Marginal PMF/PDF</td>
<td>$p_{X}(x) = \sum_{y} p_{X,Y}(x, y)$</td>
<td>$f_{X}(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$</td>
</tr>
<tr>
<td>Expectation</td>
<td>$E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y)p_{X,Y}(x, y)$</td>
<td>$E[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y)f_{X,Y}(x, y) dx dy$</td>
</tr>
<tr>
<td>Conditional PMF/PDF</td>
<td>$p_{X</td>
<td>Y}(x \mid y) = \frac{p_{X,Y}(x, y)}{p_{Y}(y)}$</td>
</tr>
<tr>
<td>Conditional Expectation</td>
<td>$E[X \mid Y = y] = \sum_{x} xp_{X</td>
<td>Y}(x \mid y)$</td>
</tr>
<tr>
<td>Independence</td>
<td>$\forall x, y, p_{X,Y}(x, y) = p_{X}(x)p_{Y}(y)$</td>
<td>$\forall x, y, f_{X,Y}(x, y) = f_{X}(x)f_{Y}(y)$</td>
</tr>
</tbody>
</table>
Agenda

• Joint Distributions
 – Cartesian Products
 – Joint PMFs and Joint Range
 – Marginal Distribution
• Conditional Expectation and Law of Total Expectation
• Conditional expectation and LTE for continuous RVs
• Covariance
Covariance: How correlated are X and Y?

Recall that if X and Y are independent, $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$.

Definition: The covariance of random variables X and Y,
\[
\text{Cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]
\]

Unlike variance, covariance can be positive or negative. It has value 0 if the random variables are independent.
Two Covariance examples:

Suppose $X \sim \text{Bernoulli}(p)$

If random variable $Y = X$ then
\[
\text{Cov}(X, Y) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \text{Var}(X) = p(1 - p)
\]

If random variable $Z = -X$ then
\[
\text{Cov}(X, Z) = \mathbb{E}[XZ] - \mathbb{E}[X] \cdot \mathbb{E}[Z]
\]
\[
= \mathbb{E}[-X^2] - \mathbb{E}[X] \cdot \mathbb{E}[-X]
\]
\[
= -\mathbb{E}[X^2] + \mathbb{E}[X]^2 = -\text{Var}(X) = -p(1 - p)
\]