Lecture 10: Bloom Filter
Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!
Basic Problem

Problem: Store a subset S of a large set U.

Example. $U =$ set of 128 bit strings
$S =$ subset of strings of interest

$|U| \approx 2^{128}$
$|S| \approx 1000$

Two goals:
1. Very fast (ideally constant time) answers to queries “Is $x \in S$?” for any $x \in U$.
2. Minimal storage requirements.
Naïve Solution I – Constant Time

Idea: Represent S as an array A with 2^{128} entries.

$$S = \{0, 2, \ldots, K\}$$

Membership test: To check $x \in S$ just check whether $A[x] = 1$.

\rightarrow constant time! 👍😍

Storage: Require storing 2^{128} bits, even for small S. 😞😢

$$A[x] = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}$$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>K</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Naïve Solution II – Small Storage

Idea: Represent S as a list with $|S|$ entries.

$$S = \{0,2, \ldots, K\}$$

Storage: Grows with $|S|$ only 😊 😊

Membership test: Check $x \in S$ requires time linear in $|S|$ 😞 😞

(Can be made logarithmic by using a tree)
Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[h(x)] = x$

Storage: m elements (size of array)

Hash function $h: U \rightarrow [m]$
Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[h(x)] = x$

Storage: m elements (size of array)

Challenge 1: Ensure $h(x) \neq h(y)$ for most $x, y \in S$

Challenge 2: Ensure $m = O(|S|)$
Collisions occur when $h(x) = h(y)$ for some distinct $x, y \in S$, i.e., two elements of set map to the same location.

- Common solution: chaining – at each location (bucket) in the table, keep linked list of all elements that hash there.
Good hash functions to keep collisions low

- The hash function h is good iff it
 - distributes elements uniformly across the m array locations so that
 - pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332
Hashing: summary

Hash Tables

• They store the data itself
• With a good hash function, the data is well distributed in the table and lookup times are small.
• However, they need at least as much space as all the data being stored, i.e., $m = \Omega(|S|)$

In some cases, $|S|$ is huge, or not known a-priori ...

Can we do better!?
Bloom Filters to the rescue
(Named after Burton Howard Bloom)
Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 1. $\text{add}(x)$ - adds $x \in U$ to the set S
 2. $\text{contains}(x)$ – ideally: true if $x \in S$, false otherwise

Possible false positives

Combine with fallback mechanism – can distinguish false positives from true positives with extra cost
Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array “the Bloom filter”
- k rows t_1, \ldots, t_k, each of size m
- Think of each row as an m-bit vector

k different hash functions $h_1, \ldots, h_k : U \rightarrow [m]$

<table>
<thead>
<tr>
<th></th>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

function **INITIALIZE**(k, m)

 for $i = 1, \ldots, k$: do

 $t_i = \text{new bit vector of } m \text{ 0s}$

• Update Bloom filter for $S \leftarrow S \cup \{x\}$

function **ADD**(x)

 for $i = 1, \ldots, k$: do

 $t_i[h_i(x)] = 1$

• Check if $x \in S$

function **CONTAINS**(x)

 return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1$
Bloom Filters - Initialization

Function `initialize(k, m)`

For $i = 1, \ldots, k$: do

$t_i =$ new bit vector of m 0s

- **Number of hash functions**
- **Size of array associated to each hash function.**

for each hash function, initialize an empty bit vector of size m
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```plaintext
function INITIALIZE($k, m$)
    for $i = 1, \ldots, k$: do
        $t_i =$ new bit vector of $m$ 0s
```

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Add

function `ADD(x)`

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

for each hash function h_i

Index into i-th bit-vector, at index produced by hash function and set to 1

$h_i(x) \rightarrow$ result of hash function h_i on x
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $ADD(x)$

for $i = 1, \ldots, k$:

$\begin{align*}
 t_i[h_i(x)] &= 1 \\
\end{align*}$

```add("thisisavirus.com")
$$
\begin{align*}
  h_1("thisisavirus.com") \rightarrow 2
\end{align*}
```

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $ADD(x)$

for $i = 1, \ldots, k$: do

t$_i[h_i(x)] = 1$

add("thisisavirus.com")

$h_1("thisisavirus.com") \rightarrow 2$

$h_2("thisisavirus.com") \rightarrow 1$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t$_1$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t$_2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t$_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

\[
\text{function } \text{ADD}(x) \\
\text{for } i = 1, \ldots, k: \text{ do} \\
\quad t_i[h_i(x)] = 1
\]

\[
\begin{array}{c|c|c|c|c|c}
\text{Index} & 0 & 1 & 2 & 3 & 4 \\
\hline
\hline
\text{t}_1 & 0 & 0 & \textbf{1} & 0 & 0 \\
\hline
\text{t}_2 & 0 & \textbf{1} & 0 & 0 & 0 \\
\hline
\text{t}_3 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

add("thisisavirus.com")

$h_1("thisisavirus.com") \rightarrow 2$

$h_2("thisisavirus.com") \rightarrow 1$

$h_3("thisisavirus.com") \rightarrow 4$
Bloom Filter: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

function \(\text{ADD}(x) \)

\[
\text{for } i = 1, \ldots, k: \text{ do } \\
t_i[h_i(x)] = 1
\]

add(“thisisavirus.com”)

\[
\begin{align*}
h_1(“thisisavirus.com”) & \rightarrow 2 \\
h_2(“thisisavirus.com”) & \rightarrow 1 \\
h_3(“thisisavirus.com”) & \rightarrow 4
\end{align*}
\]

<table>
<thead>
<tr>
<th>Index (i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Contains

```plaintext
function CONTAINS(x)
    return \( t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1 \)
```

Returns True if the bit vector \(t_i \) for each hash function has bit 1 at index determined by \(h_i(x) \),

Returns False otherwise
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

Function $\text{CONTAINS}(x)$

```
return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

contains(“thisisavirus.com”)

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

function `contains(x)`

```
return \( t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1 \)
```

contains(“thisisavirus.com”)

\(h_1(“thisisavirus.com”) \rightarrow 2 \)

True

<table>
<thead>
<tr>
<th>Index (\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

contains("thisisavirus.com")

$h_1(“thisisavirus.com”) \rightarrow 2$

$h_2(“thisisavirus.com”) \rightarrow 1$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function `CONTAINS(x)`

```
return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1$
```

contains("thisisavirus.com")

$h_1("thisisavirus.com") \rightarrow 2$

$h_2("thisisavirus.com") \rightarrow 1$

$h_3("thisisavirus.com") \rightarrow 4$

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

Function `CONTAINS(x)`

```python
function CONTAINS(x)
    return \( t_1[h_1(x)] == 1 \wedge t_2[h_2(x)] == 1 \wedge \cdots \wedge t_k[h_k(x)] == 1 \)
```

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Since all conditions satisfied, returns **True** (correctly)

\[
\begin{align*}
\text{contains(“thisisavirus.com”)} & \quad h_1(“thisisavirus.com”) \rightarrow 2 \\
 & \quad h_2(“thisisavirus.com”) \rightarrow 1 \\
 & \quad h_3(“thisisavirus.com”) \rightarrow 4
\end{align*}
\]
Bloom Filters: False Positives

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

add(“totallynotsuspicious.com”)

\[
\text{function} \ \text{ADD}(x) \\
\text{for } i = 1, \ldots, k: \text{ do} \\
t_i[h_i(x)] = 1
\]

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

```plaintext
function \( \text{ADD}(x) \)
    for \( i = 1, \ldots, k \): do
        \( t_i[h_i(x)] = 1 \)
```

add(“totallynotsuspicious.com”)

\(h_1(“totallynotsuspicious.com”) \rightarrow 1 \)

<table>
<thead>
<tr>
<th>Index (\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions.

function $\text{ADD}(x)$

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

add(“totallynotsuspicious.com”)

$h_1(“totallynotsuspicious.com”) \rightarrow 1$

$h_2(“totallynotsuspicious.com”) \rightarrow 0$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{ADD}(x)$

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

$h_1("totallynotsuspicious.com") \rightarrow 1$
$h_2("totallynotsuspicious.com") \rightarrow 0$
$h_3("totallynotsuspicious.com") \rightarrow 4$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function ADD(x)

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

$h_1("totallynotsuspicious.com") \rightarrow 1$

$h_2("totallynotsuspicious.com") \rightarrow 0$

$h_3("totallynotsuspicious.com") \rightarrow 4$

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

```plaintext
function CONTAINS(x)
    return \( t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \ldots \land t_k[h_k(x)] = 1 \)
```

contains(“verynormalsite.com”)

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function CONTAINS(x)
    return t_1[h_1(x)] == 1 ∧ t_2[h_2(x)] == 1 ∧ ... ∧ t_k[h_k(x)] == 1
```

`contains("verynormalsite.com")`

```
h_1("verynormalsite.com") → 2
```

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```plaintext
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

contains(“verynormalsite.com”)

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$h_1(“verynormalsite.com”) \rightarrow 2$

$h_2(“verynormalsite.com”) \rightarrow 0$
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

Contains("verynormalsite.com")

- $h_1("verynormalsite.com") \rightarrow 2$
- $h_2("verynormalsite.com") \rightarrow 0$
- $h_3("verynormalsite.com") \rightarrow 4$

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Since all conditions satisfied, returns True (incorrectly)
Analysis: False positive probability

Question: For an element \(x \in U \), what is the probability that \(\text{contains}(x) \) returns true if \(\text{add}(x) \) was never executed before?

Probability over what?! Over the choice of the \(h_1, \ldots, h_k \)

Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each \(h_i(x) \) is uniformly distributed in \([m]\) for all \(x \) and \(i \)
- Hash function outputs for each \(h_i \) are mutually independent (not just in pairs)
- Different hash functions are independent of each other
False positive probability – Events

Assume we perform \(\text{add}(x_1), \ldots, \text{add}(x_n) \)

+ \(\text{contains}(x) \) for \(x \notin \{x_1, \ldots, x_n\} \)

Event \(E_i \) holds iff \(h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\} \)

\[
P(\text{false positive}) = P(E_1 \cap E_2 \cap \cdots \cap E_k) = \prod_{i=1}^{k} P(E_i)
\]

\(h_1, \ldots, h_k \) independent
False positive probability – Events

Event E_i holds iff $h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\}$

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ... and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c | h_i(x) = z)$$
False positive probability – Events

\[P(E_i^c \mid h_i(x) = z) = P(h_i(x_1) \neq z, \ldots, h_i(x_n) \neq z \mid h_i(x) = z) \]

= \[P(h_i(x_1) \neq z, \ldots, h_i(x_n) \neq z) \]

= \[\prod_{j=1}^{n} P(h_i(x_j) \neq z) \]

= \[\prod_{j=1}^{n} \left(1 - \frac{1}{m}\right) = \left(1 - \frac{1}{m}\right)^n \]

\[P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c \mid h_i(x) = z) = \left(1 - \frac{1}{m}\right)^n \]
False positive probability – Events

Event E_i holds iff $h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\}$

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and \ldots and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \left(1 - \frac{1}{m}\right)^n$$

$$FPR = \prod_{i=1}^{k} \left(1 - P(E_i^c)\right) = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$
False Positivity Rate – Example

\[\text{FPR} = \left(1 - \left(1 - \frac{1}{m} \right)^n \right)^k \]

e.g., \(n = 5,000,000 \)
\(k = 30 \)
\(m = 2,500,000 \)

\[\text{FPR} = 1.28\% \]
Comparison with Hash Tables - **Space**

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with \(k = 30 \) and \(m = 2,500,000 \)

<table>
<thead>
<tr>
<th>Hash Table (optimistic)</th>
<th>Bloom Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5,000,000 \times 40B = 200MB)</td>
<td>(2,500,000 \times 30 = 75,000,000 \text{ bits})</td>
</tr>
</tbody>
</table>
Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
- Suppose the false positive rate is 3%

\[
1\text{ms} + \frac{100000 \times 0.03 \times 500\text{ms}}{102000} + 2000 \times 500\text{ms} \approx 25.51\text{ms}
\]
Bloom Filters typical of….

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!