Lecture 10: Bloom Filter
Announcements

• PSet 3 due today
• PSet 2 returned yesterday
• PSet 4 will be posted today
 – Last PSet prior to midterm (midterm is in exactly two weeks from now)
 – Midterm info will follow soon
 – PSet 5 will only come after the midterm in two weeks
• Midterm feedback/evaluation to come soon (Tomorrow or Friday).
Recap Variance – Properties

Definition. The **variance** of a (discrete) RV X is

$$\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_x(x) \cdot (x - \mathbb{E}[X])^2$$

Theorem. For any $a, b \in \mathbb{R}$, $\text{Var}(a \cdot X + b) = a^2 \cdot \text{Var}(X)$

Theorem. $\text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$
Agenda

• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
• An Application: Bloom Filters!
Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$.

Theorem. If X, Y independent, $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$.

Corollary. If X_1, X_2, \ldots, X_n mutually independent, $\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i} \text{Var}(X_i)$.
Example – Coin Tosses

We flip n independent coins, each one heads with probability p.

- $X_i = \begin{cases} 1, & \text{i^{th} outcome is heads} \\ 0, & \text{i^{th} outcome is tails} \end{cases}$

- $Z =$ number of heads

What is $\mathbb{E}[Z]$? What is $\text{Var}(Z)$?

$$\mathbb{E}[Z] = \sum_{i=1}^{n} X_i$$

$$\text{Var}(Z) = \sum_{i=1}^{n} \text{Var}(X_i) = n \cdot p(1 - p)$$

Fact. $Z = \sum_{i=1}^{n} X_i$

$P(X_i = 1) = p$
$P(X_i = 0) = 1 - p$

$P(Z = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

Note: X_1, \ldots, X_n are mutually independent! [Verify it formally!]

Note $\text{Var}(X_i) = p(1 - p)$
Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Proof

Let $x_i, y_i, i = 1, 2, \ldots$ be the possible values of X, Y.

\[
\mathbb{E}[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j)
\]

$\quad = \sum_i \sum_j x_i \cdot y_i \cdot P(X = x_i) \cdot P(Y = y_j)$

$\quad = \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j) \right)$

$\quad = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Note: NOT true in general; see earlier example $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$
(Not Covered) Proof of $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$

Theorem. If X, Y independent, $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$

Proof

$$\text{Var}(X + Y) = \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2$$

\[= \mathbb{E}[X^2 + 2XY + Y^2] - (\mathbb{E}[X] + \mathbb{E}[Y])^2\]

\[= \mathbb{E}[X^2] + 2\mathbb{E}[XY] + \mathbb{E}[Y^2] - (\mathbb{E}[X]^2 + 2\mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[Y]^2)\]

\[= \mathbb{E}[X^2] - \mathbb{E}[X]^2 + \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 + 2\mathbb{E}[XY] - 2\mathbb{E}[X]\mathbb{E}[Y]\]

\[= \text{Var}(X) + \text{Var}(Y) + 2\mathbb{E}[XY] - 2\mathbb{E}[X]\mathbb{E}[Y]\]

\[= \text{Var}(X) + \text{Var}(Y)\]

equal by independence
Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!
Basic Problem

Problem: Store a subset S of a large set U.

Example. $U =$ set of 128 bit strings
$S =$ subset of strings of interest
$|U| \approx 2^{128}$
$|S| \approx 1000$

Two goals:

1. **Very fast** (ideally constant time) answers to queries “Is $x \in S$?” for any $x \in U$.
2. **Minimal storage** requirements.
Naïve Solution I – Constant Time

Idea: Represent S as an array A with 2^{128} entries.

$S = \{0, 2, \ldots, K\}$

Membership test: To check $x \in S$ just check whether $A[x] = 1$.

→ constant time! 👍 😊

Storage: Require storing 2^{128} bits, even for small S. 😞 😢
Naïve Solution II – Small Storage

Idea: Represent S as a list with $|S|$ entries.

$S = \{0, 2, \ldots, K\}$

Storage: Grows with $|S|$ only 😊 😊

Membership test: Check $x \in S$ requires time linear in $|S|$
(Can be made logarithmic by using a tree) 😞 😞
Hash Table

Idea: Map elements in \(S \) into an array \(A \) of size \(m \) using a hash function \(h \).

Membership test: To check \(x \in S \) just check whether \(A[h(x)] = x \).

Storage: \(m \) elements (size of array).

\[
\text{hash function } h : U \rightarrow [m]
\]
Hash Table

\[x, y \in S \]

Idea: Map elements in \(S \) into an array \(A \) of size \(m \) using a hash function \(h \)

Membership test: To check \(x \in S \) just check whether \(A[h(x)] = x \)

Storage: \(m \) elements (size of array)

Challenge 1: Ensure \(h(x) \neq h(y) \) for most \(x, y \in S \)

Challenge 2: Ensure \(m = O(|S|) \)
Hashing: collisions

Collisions occur when \(h(x) = h(y) \) for some distinct \(x, y \in S \), i.e., two elements of set map to the same location.

- Common solution: **chaining** – at each location (bucket) in the table, keep linked list of all elements that hash there.

Q: How many collisions in expectation if the table has size \(|S| \) and hash function assigns each \(x \) to a random position?
Good hash functions to keep collisions low

• The hash function h is good iff it
 – distributes elements uniformly across the m array locations so that
 – pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332
Hashing: summary

Hash Tables

• They store the data itself
• With a good hash function, the data is well distributed in the table and lookup times are small. \(C \cdot |S| \times |X| \)
• However, they need at least as much space as all the data being stored, i.e., \(m = \Omega(|S|) \)

In some cases, \(|S|\) is huge, or not known a-priori ...

Can we do better!?
Bloom Filters
to the rescue
(Named after Burton Howard Bloom)
Bloom Filters

- Stores information about a set of elements \(S \subseteq U \).
- Supports two operations:
 1. \textbf{add}(x) - adds \(x \in U \) to the set \(S \)
 2. \textbf{contains}(x) – ideally: true if \(x \in S \), false otherwise

Possible \textit{false positives}

\textbf{Combine with fallback mechanism} – can distinguish false positives from true positives with extra cost
Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array “the Bloom filter”

- k rows t_1, \ldots, t_k, each of size m
- Think of each row as an m-bit vector

k different hash functions $h_1, \ldots, h_k : U \rightarrow [m]$
Bloom Filters – Three operations

• Set up Bloom filter for \(S = \emptyset \)

• Update Bloom filter for \(S \leftarrow S \cup \{x\} \)

• Check if \(x \in S \)

function \(\text{INITIALIZE}(k, m) \)
\[
\text{for } i = 1, \ldots, k: \text{ do} \\
\quad t_i = \text{new bit vector of } m \text{ 0s}
\]

function \(\text{ADD}(x) \)
\[
\text{for } i = 1, \ldots, k: \text{ do} \\
\quad t_i[h_i(x)] = 1
\]

function \(\text{CONTAINS}(x) \)
\[
\text{return } t_1[h_1(x)] = 1 \wedge t_2[h_2(x)] = 1 \wedge \cdots \wedge t_k[h_k(x)] = 1
\]
Bloom Filters - Initialization

function `INITIALIZE(k, m)`

for `i = 1, ..., k`: do

`t_i = new bit vector of m 0s`

Number of hash functions

Size of array associated to each hash function.

for each hash function, initialize an empty bit vector of size `m`
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```plaintext
function INITIALIZE($k, m$)
    for $i = 1, \ldots, k$: do
        $t_i$ = new bit vector of $m$ 0s
```

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
function ADD(x) for i = 1, ..., k: do

\[t_i[h_i(x)] = 1 \]

for each hash function \(h_i \)

Index into \(i \)-th bit-vector, at index produced by hash function and set to 1

\(h_i(x) \rightarrow \) result of hash function \(h_i \) on \(x \)
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

Bloom function \(\text{ADD}(x) \)

\[
\text{for } i = 1, \ldots, k: \text{ do}
\]

\[
t_i[h_i(x)] = 1
\]

table:

<table>
<thead>
<tr>
<th>Index (\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

add("thisisavirus.com")

\(h_1(\text{"thisisavirus.com"}) \rightarrow 2 \)
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

\[
\text{function } \text{ADD}(x) \\
\quad \text{for } i = 1, \ldots, k: \text{ do} \\
\quad t_i[h_i(x)] = 1
\]

add(“thisisavirus.com”)

- \(h_1(“thisisavirus.com”) \rightarrow 2 \)
- \(h_2(“thisisavirus.com”) \rightarrow 1 \)

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```plaintext
function ADD(x)
for $i = 1, \ldots, k$: do
    $t_i[h_i(x)] = 1$
```

add(“thisisavirus.com”)

- $h_1(“thisisavirus.com”) \rightarrow 2$
- $h_2(“thisisavirus.com”) \rightarrow 1$
- $h_3(“thisisavirus.com”) \rightarrow 4$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Bloom Filters: Example

Bloom filter $t$ of length $m = 5$ that uses $k = 3$ hash functions

function $\text{ADD}(x)$
for $i = 1, \ldots, k$: do
$$t_i[h_i(x)] = 1$$

add(“thisisavirus.com”)

$h_1(“thisisavirus.com”) \rightarrow 2$
$h_2(“thisisavirus.com”) \rightarrow 1$
$h_3(“thisisavirus.com”) \rightarrow 4$

<table>
<thead>
<tr>
<th>Index $\rightarrow$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Contains

```python
function CONTAINS(x)
 return t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1
```

Returns True if the bit vector $t_i$ for each hash function has bit 1 at index determined by $h_i(x)$,
Returns False otherwise
### Bloom Filters: Example

Bloom filter $t$ of length $m = 5$ that uses $k = 3$ hash functions

```python
def contains(x):
 return t1[h1(x)] == 1 & t2[h2(x)] == 1 & ... & tk[hk(x)] == 1
```

contains("thisisavirus.com")

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter $t$ of length $m = 5$ that uses $k = 3$ hash functions

```python
function CONTAINS(x)
 return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

contains(“thisisavirus.com”)

$h_1(“thisisavirus.com”) \rightarrow 2$

<table>
<thead>
<tr>
<th>Index $\rightarrow$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter \( t \) of length \( m = 5 \) that uses \( k = 3 \) hash functions

\[
\text{function} \ \text{CONTAINS}(x) \\
\text{return} \ t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1
\]

contains(“thisisavirus.com”)

\[
h_1(“thisisavirus.com”) \rightarrow 2 \\
h_2(“thisisavirus.com”) \rightarrow 1
\]

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>( t_1 )</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( t_2 )</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( t_3 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter \( t \) of length \( m = 5 \) that uses \( k = 3 \) hash functions

```
function CONTAINS(x)
 return \(t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1 \)
```

```
<table>
<thead>
<tr>
<th>Index (\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>(\circ)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>(\circ)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\circ)</td>
</tr>
</tbody>
</table>
```

contains(“thisisavirus.com”)

\( h_1(“thisisavirus.com”) \rightarrow 2 \)
\( h_2(“thisisavirus.com”) \rightarrow 1 \)
\( h_3(“thisisavirus.com”) \rightarrow 4 \)
Bloom Filters: Example

Bloom filter \( t \) of length \( m = 5 \) that uses \( k = 3 \) hash functions

```plaintext
function CONTAINS(x)
 return \(t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1 \)
```

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>( t_1 )</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( t_2 )</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( t_3 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Since all conditions satisfied, returns True (correctly)
Bloom Filters: False Positives

Bloom filter $t$ of length $m = 5$ that uses $k = 3$ hash functions

function $ADD(x)$
for $i = 1, \ldots, k$: do
$t_i[h_i(x)] = 1$

add(“totallynotsuspicious.com”)
Bloom Filters: False Positives

Bloom filter $t$ of length $m = 5$ that uses $k = 3$ hash functions

**function** $ADD(x)$

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

add(“totallynotsuspicious.com”)

$h_1(“totallynotsuspicious.com”) \rightarrow 1$

<table>
<thead>
<tr>
<th>Index $\rightarrow$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter $t$ of length $m = 5$ that uses $k = 3$ hash functions

```
function ADD(x)
 for $i = 1, \ldots, k$: do
 $t_i[h_i(x)] = 1$
```

add(“totallynotsuspicious.com”)

$h_1(“totallynotsuspicious.com”) \rightarrow 1$

$h_2(“totallynotsuspicious.com”) \rightarrow 0$

<table>
<thead>
<tr>
<th>Index $\rightarrow$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{ADD}(x)$
for $i = 1, \ldots, k$: do
  $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_2$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter \( t \) of length \( m = 5 \) that uses \( k = 3 \) hash functions

```plaintext
function \(\text{ADD}(x) \)
for \(i = 1, \ldots, k \): do
\(t_i[h_i(x)] = 1 \)
```

add(“totallynotsuspicious.com”)

- \( h_1(“totallynotsuspicious.com”) \rightarrow 1 \)
- \( h_2(“totallynotsuspicious.com”) \rightarrow 0 \)
- \( h_3(“totallynotsuspicious.com”) \rightarrow 4 \)

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>( t_1 )</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( t_2 )</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( t_3 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter \( t \) of length \( m = 5 \) that uses \( k = 3 \) hash functions

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>( t_1 )</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( t_2 )</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( t_3 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

contains(“verynormalsite.com”)
Bloom Filters: False Positives

Bloom filter t of length \( m = 5 \) that uses \( k = 3 \) hash functions

```python
def contains(x):
 t1 = 1 \land t2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1
 return True
```

contains(“verynormalsite.com”)

\[ h_1(“verynormalsite.com”) \rightarrow 2 \]

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>( t_1 )</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( t_2 )</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( t_3 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter \( t \) of length \( m = 5 \) that uses \( k = 3 \) hash functions

<table>
<thead>
<tr>
<th>Index ( \rightarrow )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>( t_1 )</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( t_2 )</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( t_3 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\text{function } \text{CONTAINS}(x) \\
\text{return } t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1
\]

contains("verynormalsite.com")

\( h_1("verynormalsite.com") \rightarrow 2 \)
\( h_2("verynormalsite.com") \rightarrow 0 \)
Bloom Filters: False Positives

Bloom filter $t$ of length $m = 5$ that uses $k = 3$ hash functions

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_2$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

contains("verynormalsite.com")

$h_1("verynormalsite.com") \rightarrow 2$
$h_2("verynormalsite.com") \rightarrow 0$
$h_3("verynormalsite.com") \rightarrow 4$

function $\text{CONTAINS}(x)$
return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \ldots \land t_k[h_k(x)] == 1$
Bloom Filters: False Positives

Bloom filter $t$ of length $m = 5$ that uses $k = 3$ hash functions

```plaintext
function CONTAINS(x)
 return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \ldots \land t_k[h_k(x)] == 1$
```

contains(“verynormalsite.com”)

$h_1(“verynormalsite.com”) \rightarrow 2$

$h_2(“verynormalsite.com”) \rightarrow 0$

$h_3(“verynormalsite.com”) \rightarrow 4$

Since all conditions satisfied, returns True (incorrectly)

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_2$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Analysis: False positive probability

**Question:** For an element $x \in U$, what is the probability that $\text{contains}(x)$ returns true if $\text{add}(x)$ was never executed before?

Probability over what?! Over the choice of the $h_1, \ldots, h_k$

Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each $h_i(x)$ is uniformly distributed in $[m]$ for all $x$ and $i$
- Hash function outputs for each $h_i$ are mutually independent (not just in pairs)
- Different hash functions are independent of each other
**False positive probability – Events**

Assume we perform \( \text{add}(x_1), \ldots, \text{add}(x_n) \)  
+ \( \text{contains}(x) \) for \( x \not\in \{x_1, \ldots, x_n\} \)

Event \( E_i \) holds iff \( h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\} \)

\[
P(\text{false positive}) = P(E_1 \cap E_2 \cap \ldots \cap E_k) = \prod_{i=1}^{k} P(E_i)
\]

\( h_1, \ldots, h_k \) independent
False positive probability – Events

Event $E_i$ holds iff $h_i(x) \in \{h_i(x_1), ..., h_i(x_n)\}$

Event $E_i^c$ holds iff $h_i(x) \neq h_i(x_1)$ and ... and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c | h_i(x) = z)$$

LTP
False positive probability – Events

\[ P(E_i^c \mid h_i(x) = z) = P(h_i(x_1) \neq z, \ldots, h_i(x_n) \neq z \mid h_i(x) = z) \]

\[ = P(h_i(x_1) \neq z, \ldots, h_i(x_n) \neq z) \]

\[ = \prod_{j=1}^{n} P(h_i(x_j) \neq z) \]

\[ = \prod_{j=1}^{n} \left(1 - \frac{1}{m}\right) = \left(1 - \frac{1}{m}\right)^n \]

\[ P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c \mid h_i(x) = z) = \left(1 - \frac{1}{m}\right)^n \]
False positive probability – Events

Event $E_i$ holds iff $h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\}$

Event $E_i^c$ holds iff $h_i(x) \neq h_i(x_1)$ and $\ldots$ and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \left(1 - \frac{1}{m}\right)^n$$

$$\text{FPR} = \prod_{i=1}^{k} \left(1 - P(E_i^c)\right) = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$
False Positivity Rate – Example

\[ \text{FPR} = \left( 1 - \left( 1 - \frac{1}{m} \right)^n \right)^k \]

e.g., \( n = 5,000,000 \), \( k = 30 \), \( m = 2,500,000 \)

\[ \text{FPR} = 1.28\% \]
Comparison with Hash Tables - **Space**

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with $k = 30$ and $m = 2,500,000$

<table>
<thead>
<tr>
<th>Hash Table</th>
<th>Bloom Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(optimistic) $5,000,000 \times 40B = 200MB$</td>
<td>$2,500,000 \times 30 = 75,000,000$ bits $&lt; 10$ MB</td>
</tr>
</tbody>
</table>
**Time**

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
- Suppose the false positive rate is 3%

\[
1 \text{ms} + \frac{100000 \times 0.03 \times 500 \text{ms}}{102000} + 2000 \times 500 \text{ms} \approx 25.51 \text{ms}
\]
Bloom Filters typical of....

... randomized algorithms and randomized data structures.

• Simple
• Fast
• Efficient
• Elegant
• Useful!