Review Conditional & Total Probabilities

• Conditional Probability

\[P(B|A) = \frac{P(A \cap B)}{P(A)} \]

• Bayes Theorem

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \text{ if } P(A) \neq 0, P(B) \neq 0 \]

• Law of Total Probability

If \(E_1, ..., E_n \) partition \(\Omega \)

\[P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F|E_i)P(E_i) \]
Conditional Probability Defines a Probability Space

The probability conditioned on \mathcal{A} follows the same properties as (unconditional) probability.

Example. $P(\mathcal{B}^c | \mathcal{A}) = 1 - P(\mathcal{B} | \mathcal{A})$

Formally. (Ω, P) is a probability space and $P(\mathcal{A}) > 0$

$(\mathcal{A}, P(\cdot | \mathcal{A}))$ is a probability space
Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let E_1, E_2, \ldots, E_n be a partition of the sample space, and F an event. Then,

$$P(E_1 | F) = \frac{P(F | E_1)P(E_1)}{P(F)} = \frac{P(F | E_1)P(E_1)}{\sum_{i=1}^{n} P(F | E_i)P(E_i)}$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$P(E | F) = \frac{P(F | E)P(E)}{P(F | E)P(E) + P(F | E^C)P(E^C)}$$
Agenda

• Bayes Theorem + Law of Total Probability
• Chain Rule
• Independence
• Infinite process and Von Neumann’s trick
• Conditional independence
Chain Rule

\[P(B|A) = \frac{P(A \cap B)}{P(A)} \quad \Rightarrow \quad P(A)P(B|A) = P(A \cap B) \]
Often probability space (Ω, \mathbb{P}) is given \textit{implicitly} via sequential process.

Recall from last time:

- $P(B) = P(\text{Left}) \times P(B|\text{Left}) + P(\text{Right}) \times P(B|\text{Right})$

What if we have more than two (e.g., n) steps?
Chain Rule

\[P(B|A) = \frac{P(A \cap B)}{P(A)} \]

\[P(A)P(B|A) = P(A \cap B) \]

Theorem. (Chain Rule) For events \(A_1, A_2, \ldots, A_n \),

\[P(A_1 \cap \cdots \cap A_n) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2) \cdots P(A_n|A_1 \cap A_2 \cap \cdots \cap A_{n-1}) \]

An easy way to remember: We have \(n \) tasks and we can do them sequentially, conditioning on the outcome of previous tasks.
Chain Rule Example

Shuffle a standard 52-card deck and draw the top 3 cards. (uniform probability space)

What is $P(\mathcal{A} \cap \mathcal{B} \cap \mathcal{C})$?

A: Ace of Spades First
B: 10 of Clubs Second
C: 4 of Diamonds Third

$P(A) \cdot P(B|A) \cdot P(C|A \cap B)$

$\frac{1}{52} \cdot \frac{1}{51} \cdot \frac{1}{50}$
Agenda

• Bayes Theorem + Law of Total Probability
• Chain Rule
• Independence
• Infinite process and Von Neumann’s trick
• Conditional independence
Independence

Definition. Two events A and B are (statistically) **independent** if

$$P(A \cap B) = P(A) \cdot P(B).$$

Equivalent formulations:
- If $P(A) \neq 0$, equivalent to $P(B|A) = P(B)$
- If $P(B) \neq 0$, equivalent to $P(A|B) = P(A)$

“The probability that B occurs after observing A” – Posterior
= “The probability that B occurs” – Prior
Independence - Example

Assume we toss two fair coins

“first coin is heads”

“second coin is heads”

\[A = \{\text{HH, HT}\} \]

\[B = \{\text{HH, TH}\} \]

\[P(A) = 2 \times \frac{1}{4} = \frac{1}{2} \]

\[P(B) = 2 \times \frac{1}{4} = \frac{1}{2} \]

\[
P(A \cap B) = P(\{HH\}) = \frac{1}{4} = P(A) \cdot P(B)
\]
Example – Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.

• $A = \{\text{at most one } T\} = \{HHH, HHT, HTH, THH\}$
• $B = \{\text{at most 2 } H'\text{s}\} = \{HHH\}^c$

Independent?

$$P(A \cap B) \overset{?}{=} P(A) \cdot P(B)$$

$$\frac{3}{8} \neq \frac{1}{2} \cdot \frac{7}{8}$$

Poll:
A. Yes, independent
B. No

pollev/paulbeame028
Definition. Events A_1, \ldots, A_n are mutually independent if for every non-empty subset $I \subseteq \{1, \ldots, n\}$, we have

$$P \left(\bigcap_{i \in I} A_i \right) = \prod_{i \in I} P(A_i).$$
Example – Network Communication

Each link works with the probability given, **independently**

i.e., mutually independent events A, B, C, D with

$$P(A) = p$$
$$P(B) = q$$
$$P(C) = r$$
$$P(D) = s$$
Example – Network Communication

If each link works with the probability given, independently:

What’s the probability that nodes 1 and 4 can communicate?

\[
P(\text{1-4 connected}) = P((A \cap B) \cup (C \cap D))
\]
\[
= P(A \cap B) + P(C \cap D) - P(A \cap B \cap C \cap D)
\]

\[
P(A \cap B) = P(A) \cdot P(B) = pq
\]
\[
P(C \cap D) = P(C) \cdot P(D) = rs
\]
\[
P(A \cap B \cap C \cap D)
\]
\[
= P(A) \cdot P(B) \cdot P(C) \cdot P(D) = pqrst
\]

\[
P(\text{1-4 connected}) = pq + rs - pqrst
\]
Independence as an assumption

• People often assume it **without justification**

• Example: A skydiver has two chutes

 \[A: \text{event that the main chute doesn’t open} \quad P(A) = 0.02 \]
 \[B: \text{event that the back-up doesn’t open} \quad P(B) = 0.1 \]

• What is the chance that at least one opens assuming independence?

Assuming independence doesn’t justify the assumption!
Both chutes could fail because of the same rare event e.g., freezing rain.
Independence – Another Look

Definition. Two events A and B are (statistically) independent if

$$P(A \cap B) = P(A) \cdot P(B).$$

“Equivalently.” $P(A|B) = P(A)$.

It is important to understand that independence is a property of probabilities of outcomes, not of the root cause generating these events.

Events generated independently ➔ their probabilities satisfy independence

This can be counterintuitive!
Setting: An urn contains:
- 3 red and 3 blue balls with probability $\frac{3}{5}$
- 3 red and 1 blue ball with probability $\frac{1}{10}$
- 5 red and 7 blue balls with probability $\frac{3}{10}$

We draw a ball at random from the urn.

Are \(R \) and \(3R3B \) independent?

\[
P(R) = \frac{3}{5} \times \frac{1}{2} + \frac{1}{10} \times \frac{3}{4} + \frac{3}{10} \times \frac{5}{12} = \frac{1}{2}
\]

\[
P(3R3B) \times P(R \mid 3R3B)
\]

Independent! \(P(R) = P(R \mid 3R3B) \)
Agenda

• Bayes Theorem + Law of Total Probability
• Chain Rule
• Independence
• Infinite process and Von Neumann’s trick
• Conditional independence
Often probability space \((\Omega, P)\) is given implicitly via sequential process

- Experiment proceeds in \(n\) sequential steps, each step follows some local rules defined by the chain rule and independence
- *Natural extension:* Allows for easy definition of experiments where \(|\Omega| = \infty|\)
Fun: Von Neumann’s Trick with a biased coin

• How to use a biased coin to get a fair coin flip:
 – Suppose that you have a biased coin:
 • \(P(H) = p \) \(P(T) = 1 - p \)

1. Flip coin twice: If you get \(HH \) or \(TT \) go to step 1
2. If you got \(HT \) output \(H \); if you got \(TH \) output \(T \).

Why is it fair? \(P(H) = P(HT) = p(1 - p) = (1 - p)p = P(TH) = P(T) \)

Drawback: You may never get to step 2.
The sample space for Von Neumann’s trick

• For each round of Von Neumann’s trick we flipped the biased coin twice.
 – If HT or TH appears, the experiment ends:
 • Total probability each round: $2p(1 - p)$ call this q
 – If HH or TT appears, the experiment continues:
 • Total probability each round: $p^2 + (1 - p)^2$ this is $1 - q$

• Probability that flipping ends in round t is $(1 - q)^{t-1} \cdot q$
 – Conditioned on ending in round t, $P(H) = P(T) = 1/2$
Sequential Process – Example

\[q \rightarrow HT \cup TH \]

\[1 - q \]

\[q \rightarrow (HH \cup TT)(HT \cup TH) \]

\[1 - q \]

\[q \rightarrow (HH \cup TT)^2(HT \cup TH) \]

\[1 - q \]

\[q \rightarrow (HH \cup TT)^3(HT \cup TH) \]

\[1 - q \]

...
The sample space for Von Neumann’s trick

More precisely, the sample space contains the successful outcomes:

\[\bigcup_{t=1}^{\infty} (HH \cup TT)^{t-1}(HT \cup TH) \]

which together have probability \(\sum_{t=1}^{\infty} (1 - q)^{t-1}q \) for \(q = 2p(1 - p) \) as well as all of the failing outcomes in \((HH \cup TT)^{\infty}\).

Observe that \(q \neq 0 \) iff \(0 < p < 1 \). We have two cases:

- If \(q \neq 0 \) then \(\sum_{t=1}^{\infty} (1 - q)^{t-1} = 1/q \) so successful outcomes account for total probability \(1 \).
- If \(q = 0 \) then either:
 - \(p = 1 \) and \((HH)^{\infty}\) has probability \(1 \).
 - \(p = 0 \) and \((TT)^{\infty}\) has probability \(1 \).
Agenda

- Bayes Theorem + Law of Total Probability
- Chain Rule
- Independence
- Infinite process and Von Neumann’s trick
- Conditional independence
Conditional Independence

Definition. Two events A and B are **independent** conditioned on C if $P(C) \neq 0$ and $P(A \cap B \mid C) = P(A \mid C) \cdot P(B \mid C)$.

- If $P(A \cap C) \neq 0$, equivalent to $P(B \mid A \cap C) = P(B \mid C)$
- If $P(B \cap C) \neq 0$, equivalent to $P(A \mid B \cap C) = P(A \mid C)$

Plain Independence. Two events A and B are **independent** if

$$P(A \cap B) = P(A) \cdot P(B).$$

- If $P(A) \neq 0$, equivalent to $P(B \mid A) = P(B)$
- If $P(B) \neq 0$, equivalent to $P(A \mid B) = P(A)$
Example – Throwing Dice

Suppose that Coin 1 has probability of heads 0.3 and Coin 2 has probability of heads 0.9. We choose one coin randomly with equal probability and flip that coin 3 times independently. What is the probability we get all heads?

\[P(\text{HHH}) = P(\text{HHH} | C_1) \cdot P(C_1) + P(\text{HHH} | C_2) \cdot P(C_2) \]

Applying the Law of Total Probability (LTP)

\[= P(H|C_1)^3 \cdot P(C_1) + P(H |C_2)^3 \cdot P(C_2) \]

Applying Conditional Independence

\[= 0.3^3 \cdot 0.5 + 0.9^3 \cdot 0.5 = 0.378 \]

\[C_i = \text{coin } i \text{ was selected} \]
Conditional independence and Bayesian inference in practice: Graphical models

- The sample space Ω is often the Cartesian product of possibilities of many different variables.
- We often can understand the probability distribution P on Ω based on *local properties* that involve a few of these variables at a time.
- We can represent this via a directed acyclic graph augmented with probability tables (called a Bayes net) in which each node represents one or more variables...
Graphical Models/Bayes Nets

• Bayes net for the Zika testing probability space \((\Omega, P)\)

Conditional Probability Table:
- One column for each value of the variables at the node
- One row for each combination of values of immediate predecessors

\[
P(T|\neg Z) = \begin{array}{c|c|c}
Z & \neg Z & \\
0.005 & 0.995 & \\
\end{array}
\]

\[
P(T|Z) = \begin{array}{c|c|c}
Z & \neg Z & \\
0.98 & 0.02 & \\
\end{array}
\]

\[
P(T|\neg Z) = \begin{array}{c|c|c}
\neg Z & Z & \\
0.01 & 0.99 & \\
\end{array}
\]

\[\Omega = \text{Cartesian product of possible value assignments at all nodes.}\]
“A Bayesian Network Model for Diagnosis of Liver Disorders” – Agnieszka Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D., Ph.D.- September 1999.
Bayes Net assumption/requirement

- The only dependence between variables is given by paths in the Bayes Net graph:
 - if only edges are then \(A \) and \(C \) are \textit{conditionally independent} given the value of \(B \)

A, B, C conditionally independent given D

A, B, and C are independent

Defines a unique global probability space \((\Omega, P)\)
Inference in Bayes Nets

Given
• Bayes Net
 • graph
 • conditional probability tables for all nodes
• Observed values of variables at some nodes
 • e.g., clinical test results

Compute
• Probabilities of variables at other nodes
 • e.g., diagnoses

“A Bayesian Network Model for Diagnosis of Liver Disorders” – Agnieszka Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.- September 1999.