Review Probability

Definition. A **sample space** Ω is the set of all possible outcomes of an experiment.

Examples:
- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Definition. An **event** $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:
- Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
- Rolling an even number on a die: $E = \{2, 4, 6\}$
Review Probability space

Definition. A (discrete) **probability space** is a pair \((\Omega, P)\) where:

- \(\Omega\) is a set called the **sample space**.
- \(P\) is the **probability measure**, a function \(P: \Omega \to \mathbb{R}\) such that:
 - \(P(x) \geq 0\) for all \(x \in \Omega\)
 - \(\sum_{x \in \Omega} P(x) = 1\)

Some outcome must show up. Normalized to sum up to 1.

The likelihood (or probability) of each outcome is non-negative.

Either finite or infinite countable (e.g., integers)

Set of possible elementary outcomes

\[A \subseteq \Omega: P(A) = \sum_{x \in A} P(x) \]

Specify Likelihood (or probability) of each elementary outcome
Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples
Conditional Probability (Idea)

What’s the probability that someone likes ice cream given they like donuts?

\[
\frac{7}{7 + 13} = \frac{7}{20}
\]
Conditional Probability

Definition. The **conditional probability** of event A **given** an event B happened (assuming $P(B) \neq 0$) is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

An equivalent and useful formula is

$$P(A \cap B) = P(A|B)P(B)$$

$$\frac{|A \cap B|}{|\Omega|} = \frac{|A \cap B|}{|B|} \cdot \frac{|B|}{|\Omega|}$$
Conditional Probability Examples

Suppose that you flip a fair coin twice. What is the probability that both flips are heads given that you have at least one head?

Let O be the event that at least one flip is heads
Let B be the event that both flips are heads

$P(O) = 3/4$ $P(B) = 1/4$ $P(B \cap O) = 1/4$

$P(B|O) = \frac{P(B \cap O)}{P(O)} = \frac{1/4}{3/4} = \frac{1}{3}$
Conditional Probability Examples

Suppose that you flip a fair coin twice. What is the probability that at least one flip is heads given that at least one flip is tails?

Let \(H \) be the event that at least one flip is *heads*.
Let \(T \) be the event that at least one flip is *tails*.
Conditional Probability Examples

Suppose that you flip a fair coin twice. What is the probability that at least one flip is heads given that at least one flip is tails?

Let H be the event that at least one flip is heads
Let T be the event that at least one flip is tails

$P(H) = \frac{3}{4}$ $P(T) = \frac{3}{4}$ $P(H \cap T) = \frac{1}{2}$

$$P(H|T) = \frac{P(H \cap T)}{P(T)} = \frac{1/2}{3/4} = \frac{2}{3}$$
Example with Conditional Probability

Suppose we toss a red die and a blue die: both 6 sided and all outcomes equally likely. What is \(P(B) \)? What is \(P(B | A) \)?

\[
\begin{array}{c|c|c}
\text{ } & P(B) & P(B | A) \\
\hline
\text{a) } & \frac{1}{6} & \frac{1}{6} \\
\text{b) } & \frac{1}{6} & \frac{1}{3} \\
\text{c) } & \frac{1}{6} & \frac{3}{36} \\
\text{d) } & \frac{1}{9} & \frac{1}{3}
\end{array}
\]

\(P(A) = \frac{3}{36} = \frac{1}{12} \)

\[
P(B | A) = \frac{P(B \cap A)}{P(A)} = \frac{\frac{1}{12}}{\frac{3}{36}} = \frac{1}{3}
\]

\(A \cap B = \{(1, 3)\} \)

\[
P(A \cap B) = \frac{1}{36}
\]
Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples
Reversing Conditional Probability

Question: Does $P(A|B) = P(B|A)$?

No!

- Let A be the event you are wet
- Let B be the event you are swimming

\[P(A|B) = 1 \quad P(B|A) \neq 1 \]
Bayes Theorem

A formula to let us “reverse” the conditional.

Theorem. (Bayes Rule) For events A and B, where $P(A), P(B) > 0$,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$P(A)$ is called the **prior** (our belief without knowing anything)

$P(A|B)$ is called the **posterior** (our belief after learning B)
Bayes Theorem Proof

Claim:

\[P(A), P(B) > 0 \quad \Rightarrow \quad P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]
Bayes Theorem Proof

By definition of conditional probability
\[P(A \cap B) = P(A|B)P(B) \]

Swapping \(A, B \) gives
\[P(B \cap A) = P(B|A)P(A) \]

But \(P(A \cap B) = P(B \cap A) \), so
\[P(A|B)P(B) = P(B|A)P(A) \]

Dividing both sides by \(P(B) \) gives
\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]
Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples
Partitions (Idea)

These events **partition** the sample space
1. They “cover” the whole space
2. They don’t overlap
Partition

Definition. Non-empty events E_1, E_2, \ldots, E_n **partition** the sample space Ω if

(Exhaustive)

$$E_1 \cup E_2 \cup \cdots \cup E_n = \bigcup_{i=1}^{n} E_i = \Omega$$

(Pairwise Mutually Exclusive)

$$\forall_i \forall_{i \neq j} E_i \cap E_j = \emptyset$$
Law of Total Probability (Idea)

If we know E_1, E_2, \ldots, E_n partition Ω, what can we say about $P(F)$?
Law of Total Probability (LTP)

Definition. If events $E_1, E_2, ..., E_n$ partition the sample space Ω, then for any event F

$$P(F) = P(F \cap E_1) + ... + P(F \cap E_n) = \sum_{i=1}^{n} P(F \cap E_i)$$

Using the definition of conditional probability $P(F \cap E) = P(F|E)P(E)$

We can get the alternate form of this that shows

$$P(F) = \sum_{i=1}^{n} P(F|E_i)P(E_i)$$
Another Contrived Example

Alice has two pockets:
• **Left pocket:** Two blue balls, two green balls
• **Right pocket:** One blue ball, two green balls.

Alice picks a random ball from a random pocket.
[Both pockets equally likely, each ball equally likely.]
Sequential Process

\[\Pr(B) = \Pr(B \cap \text{Left}) + \Pr(B \cap \text{Right}) \]
\[= \Pr(\text{Left}) \times \Pr(B|\text{Left}) + \Pr(\text{Right}) \times \Pr(B|\text{Right}) \]
\[= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{3} = \frac{1}{4} + \frac{1}{6} = \frac{5}{12} \]

- **Left pocket**: Two blue, two green
- **Right pocket**: One blue, two green

\[\frac{1}{3} = \Pr(B|\text{Right}) \] and \[\frac{2}{3} = \Pr(G|\text{Right}) \] (Law of total probability)
Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples
Example – Zika Testing

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns “positive”, what is the likelihood that you actually have the disease?

• Tests for diseases are rarely 100% accurate.
Example – Zika Testing

Suppose we know the following Zika stats
- A test is 98% effective at detecting Zika (“true positive”)
- However, the test may yield a “false positive” 1% of the time
- 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T)?

$P(Z)$

$P(T|Z)$

$P(T|Z^c)$

$P(Z|T)$
Example – Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika (“true positive”)
- However, the test may yield a “false positive” 1% of the time
- 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T)?

By Bayes Rule,

$$P(Z|T) = \frac{P(T|Z)P(Z)}{P(T)}$$

By the Law of Total Probability,

$$P(T) = P(T|Z)P(Z) + P(T|Z^c)P(Z^c)$$

$$= \frac{98}{100} \cdot \frac{5}{100} + \frac{1}{100} \cdot \frac{995}{100} = \frac{490}{10000} + \frac{995}{10000}$$

What is the probability that you do not have Zika (event Z^c)?

$$P(Z^c) = 1 - P(Z) = 99.5\%$$

So, $P(Z|T) \approx 33\%$
Philosophy – Updating Beliefs

Your beliefs changed drastically

\(Z = \) you have Zika
\(T = \) you test positive for Zika

I have a 0.5% chance of having Zika

Prior: \(P(Z)\)

Receive positive test result

I now have a 33% chance of having Zika after the test!!

Posterior: \(P(Z|T)\)
Example – Zika Testing

Suppose we know the following Zika stats
 – A test is 98% effective at detecting Zika (“true positive”) \(P(T|Z) \)
 – However, the test may yield a “false positive” 1% of the time \(P(T|Z^c) \)
 – 0.5% of the US population has Zika. \(P(Z) \)

What is the probability you have Zika (event \(Z \)) if you test negative (event \(T^c \))?

By Bayes Rule, \(P(Z|T^c) = \frac{P(T^c|Z)P(Z)}{P(T^c)} \)

By the Law of Total Probability, \(P(T^c) = P(T^c|Z)P(Z) + P(T^c|Z^c)P(Z^c) \)
= \(\frac{2}{100} \cdot \frac{5}{1000} + \left(1 - \frac{1}{100}\right) \cdot \frac{995}{1000} = \frac{10}{100000} + \frac{98505}{100000} \)

What is the probability you test negative (event \(T^c \)) if you have Zika (event \(Z \))?
\(P(T^c|Z) = 1 - P(T|Z) = 2\% \)

So, \(P(Z|T^c) = \frac{10}{10+98505} \approx 0.01\% \)
Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_1, E_2, ..., E_n$ be a partition of the sample space, and F and event. Then,

$$P(E_1|F) = \frac{P(F|E_1)P(E_1)}{P(F)} = \frac{\sum_{i=1}^{n} P(F|E_i)P(E_i)}{P(F)}$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$P(E|F) = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|E^C)P(E^C)}$$
Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let E_1, E_2, \ldots, E_n be a partition of the sample space, and F and event. Then,

$$P(E_1|F) = \frac{P(F|E_1)P(E_1)}{P(F)} = \frac{P(F|E_1)P(E_1)}{\sum_{i=1}^{n} P(F|E_i)P(E_i)}$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$P(E|F) = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|E^C)P(E^C)}$$

We just used this implicitly on the negative Zika test example with $E = Z$ and $F = T^c$
Conditional Probability Defines a Probability Space

The probability conditioned on \mathcal{A} follows the same properties as (unconditional) probability.

Example. $P(\mathcal{B}^c | \mathcal{A}) = 1 - P(\mathcal{B} | \mathcal{A})$

Formally. (Ω, P) is a probability space and $P(\mathcal{A}) > 0$

$(\mathcal{A}, P(\cdot | \mathcal{A}))$ is a probability space