CSE 312
Foundations of Computing II

Lecture 3: Even more counting
Binomial Theorem, Inclusion-Exclusion, Pigeonhole Principle
Recap

Two core rules for counting a set S:

• **Sum rule:**
 – Break up S into disjoint pieces/cases
 – $|S| = \text{the sum of the sizes of the pieces.}$

• **Product rule:**
 – View the elements of S as being constructed by a series of choices, where the # of possibilities for each choice doesn’t depend on the previous choices
 – $|S| = \text{the product of the # of choices in each step of the series.}$
Recap

- **k-sequences**: How many length k sequences over alphabet of size n?
 - Product rule $\Rightarrow n^k$

- **k-permutations**: How many length k sequences over alphabet of size n, **without repetition**?
 - Permutation $\Rightarrow \frac{n!}{(n-k)!}$

- **k-combinations**: How many size k subsets of a set of size n (**without repetition and without order**)?
 - Combination $\Rightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$
Binomial Coefficients – Many interesting and useful properties

\[
\binom{n}{k} = \frac{n!}{k! (n - k)!}
\]

\[
\binom{n}{n} = 1 \quad \binom{n}{1} = n \quad \binom{n}{0} = 1
\]

Fact. \(\binom{n}{k} = \binom{n}{n-k}\)
Symmetry in Binomial Coefficients

Fact. \(\sum_{k=0}^{n} \binom{n}{k} = 2^n\)
Follows from Binomial Theorem

Fact. \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}\)
Pascal’s Identity
Agenda

• Binomial Theorem
• Combinatorial Proofs for Pascal Identity
• Inclusion-Exclusion
• Pigeonhole Principle
• Counting Practice
Pascal’s Identity

Fact. \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \)

How to prove Pascal’s identity?

Algebraic argument:

\[
\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)! (n-k)!} + \frac{(n-1)!}{k! (n-1-k)!}
= \frac{n!}{k! (n-k)!}
= \binom{n}{k}
\]

Hard work and not intuitive

Let’s see a combinatorial argument
Example – Pascal’s Identity

Fact. \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \)

\[
|S| = |B| + |A|
\]

Combinatorial proof idea:
• Find disjoint sets \(A \) and \(B \) such that \(A, B, \) and \(S = A \cup B \) have the sizes above.
• The equation then follows by the Sum Rule.

One Minute Discussion
Example – Pascal’s Identity

Fact. \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \)

\[|S| = |B| + |A| \]

\(S \): set of size \(k \) subsets of \([n] = \{1, 2, \ldots, n\} \).

e.g. \(n = 4, k = 2, \quad S = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\} \)

\(A \): set of size \(k \) subsets of \([n-1] \) (i.e., DON’T include \(n \))

\[A = \{\{1,2\}, \{1,3\}, \{2,3\}\} \]

\(B \): Choose a size \(k - 1 \) subsets of \([n-1] \) then add \(n \) (i.e., DO include \(n \))

\[B = \{\{1,4\}, \{2,4\}, \{3,4\}\} \]

Combinatorial proof idea:
- Find disjoint sets \(A \) and \(B \) such that \(A, B, \) and \(S = A \cup B \) have these sizes.
Example – Pascal’s Identity

Fact. \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \)

\[|S| = |B| + |A| \]

\(S \): set of size \(k \) subsets of \([n] = \{1, 2, \ldots, n\} \).

\(A \): set of size \(k \) subsets of \([n - 1]\) (i.e., DON’T include \(n\)).

\(B \): Choose a size \(k - 1 \) subsets of \([n - 1]\) then add \(n\).

Combinatorial proof idea:
• Find disjoint sets \(A \) and \(B \) such that \(A, B, \) and \(S = A \cup B \) have these sizes

\(n \) not in set, need to choose \(k \) elements from \([n - 1]\)

\[|B| = \binom{n-1}{k} \]

\(n \) is in set, need to choose other \(k - 1 \) elements from \([n - 1]\)

\[|A| = \binom{n-1}{k-1} \]
Agenda

- Binomial Theorem
- Combinatorial Proofs
- Inclusion-Exclusion
- Pigeonhole Principle
- Counting Practice
Recap Disjoint Sets

Sets that do not contain common elements \((A \cap B = \emptyset)\)

Sum Rule: \(|A \cup B| = |A| + |B|\)
Inclusion-Exclusion

But what if the sets are not disjoint?

\[A \cup B = A + B - |A \cap B| \]

\[|A| = 43 \]
\[|B| = 20 \]
\[|A \cap B| = 7 \]
\[|A \cup B| = ??? \]

Fact. \[|A \cup B| = |A| + |B| - |A \cap B| \]
What if there are three sets?

\[|A| = 43 \]
\[|B| = 20 \]
\[|C| = 35 \]
\[|A \cap B| = 7 \]
\[|A \cap C| = 16 \]
\[|B \cap C| = 11 \]
\[|A \cap B \cap C| = 4 \]
\[|A \cup B \cup C| = \text{???} \]

Fact.

\[|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \]
Inclusion-Exclusion

Let A, B be sets. Then

$$|A \cup B| = |A| + |B| - |A \cap B|$$

In general, if $A_1, A_2, ..., A_n$ are sets, then

$$|A_1 \cup A_2 \cup ... \cup A_n| = \text{singles} - \text{doubles} + \text{triples} - \text{quads} + ...$$

$$= (|A_1| + ... + |A_n|) - (|A_1 \cap A_2| + ... + |A_{n-1} \cap A_n|) + ...$$
Agenda

• Binomial Theorem
• Combinatorial Proofs
• Inclusion-Exclusion
• Pigeonhole Principle
• Counting Practice
Pigeonhole Principle (PHP): Idea

10 pigeons, 9 pigeonholes
Pigeonhole Principle: Idea

If 11 children have to share 3 cakes, at least one cake must be shared by how many children?
Pigeonhole Principle – More generally

If there are n pigeons in $k < n$ holes, then one hole must contain at least $\frac{n}{k}$ pigeons!

Proof. Assume there are $< \frac{n}{k}$ pigeons per hole.

Then, there are $< k \cdot \frac{n}{k} = n$ pigeons overall.

Contradiction!
Pigeonhole Principle – Better version

If there are n pigeons in $k < n$ holes, then one hole must contain at least $\left\lceil \frac{n}{k} \right\rceil$ pigeons!

Reason. Can’t have fractional number of pigeons

Syntax reminder:
• Ceiling: $[x]$ is x rounded up to the nearest integer (e.g., $[2.731] = 3$)
• Floor: $[x]$ is x rounded down to the nearest integer (e.g., $[2.731] = 2$)
Pigeonhole Principle: Strategy

To use the PHP to solve a problem, there are generally 4 steps

1. Identify pigeons
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP
Pigeonhole Principle – Example

In a room with 367 people, there are at least two with the same birthday.

Solution:
1. **367** pigeons = people
2. **366** holes (365 for a normal year + Feb 29) = possible birthdays
3. Person goes into hole corresponding to own birthday
4. By PHP, there must be two people with the same birthday
Pigeonhole Principle – Example (Surprising?)

In every set S of 100 integers, there are at least two elements whose difference is a multiple of 37.

When solving a PHP problem:

1. Identify pigeons
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP

One Minute Discussion
Pigeonhole Principle – Example (Surprising?)

In every set S of 100 integers, there are at least two elements whose difference is a multiple of 37.

When solving a PHP problem:
1. Identify pigeons
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP

Pigeons: integers x in S
Pigeonholes: $\{0,1,\ldots,36\}$

Assignment: x goes to $x \mod 37$

Since $100 > 37$, by PHP, there are $x \neq y \in S$ s.t.

$x \mod 37 = y \mod 37$ which implies

$x - y = 37k$ for some integer k
Agenda

• Binomial Theorem
• Combinatorial Proofs
• Inclusion-Exclusion
• Pigeonhole Principle
• Counting Practice
Quick Review of Cards

- 52 total cards
- 13 different ranks: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
- 4 different suits: Hearts, Diamonds, Clubs, Spades

How many possible 5 card hands?

\[
\binom{52}{5}
\]
A "straight" is five consecutive rank cards of any suit (where A,2,3,4,5 also counts as consecutive).
How many possible straights?

\[10 \cdot 4^5 = 10,240 \]
Counting Cards II

- A flush is five card hand all of the same suit. How many possible flushes?

\[4 \cdot \binom{13}{5} = 5148 \]
Counting Cards III

- A flush is five card hand all of the same suit. How many possible flushes?
 \[4 \cdot \binom{13}{5} = 5148 \]

- How many flushes are NOT straights?
 \[= \#\text{flush} - \#\text{flush and straight} \]
 \[(4 \cdot \binom{13}{5} = 5148) - 10 \cdot 4 \]
For each object constructed, it should be possible to reconstruct the **unique** sequence of choices that led to it.

No sequence \Rightarrow under counting
Many sequences \Rightarrow over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

$$\binom{4}{3} \cdot \binom{49}{2}$$

Poll:
A. Correct
B. Overcount
C. Undercount

https://pollev.com/paulbeame028
Sleuth’s Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

\[\binom{4}{3} \cdot \binom{49}{2} \]

Problem: This counts a hand with all 4 Aces in 4 different ways!

* e.g. it counts A♣, A♦, A♥, A♠, 2♥ four times:

\{A♣, A♦, A♥\} \{A♠, 2♥\}
\{A♣, A♦, A♠\} \{A♥, 2♥\}
\{A♥, A♦, A♠\} \{A♣, 2♥\}
\{A♦, A♥, A♠\} \{A♣, 2♥\}
Sleuth’s Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence \Rightarrow under counting Many sequences \Rightarrow over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

Use the sum rule

$= \# \text{ 5 card hand containing exactly 3 Aces} + \# \text{ 5 card hand containing exactly 4 Aces}$

$= \binom{4}{3} \cdot \binom{48}{2} + \binom{48}{1}$
Counting when order only *partly* matters

We often want to count # of partly ordered lists:

Let \(M \) = # of ways to produce fully ordered lists

\(P = \) # of partly ordered lists

\(N = \) # of ways to produce corresponding fully ordered list given a partly ordered list

Then \(M = P \cdot N \) by the product rule. Often \(M \) and \(N \) are easy to compute:

\[P = \frac{M}{N} \]

Dividing by \(N \) “removes” part of the order.
Rooks on chessboard

How many ways to place two identical rooks on a chessboard so that they don’t share a row or a column

Fully ordered: Pretend Rooks are different
1. Column for rook1
2. Row for rook1
3. Column for rook2
4. Row for rook2

“Remove” the order of the two rooks:

\[(8 \cdot 7)^2 / 2\]
Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}$$

Corollary.

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

Set $x = y = 1$
Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}$$

- $= -1$ if k is odd
- $= +1$ if k is even

Corollary. For every n, if O and E are the sets of odd and even integers between 0 and n

$$\sum_{k \in O} \binom{n}{k} = \sum_{k \in E} \binom{n}{k}$$

e.g., $n=4$: 1 4 6 4 1

Proof: Set $x = -1$, $y = 1$ in the binomial theorem
Tools and concepts

- Sum rule, Product rule
- Permutations, combinations
- Inclusion-exclusion
- Binomial Theorem
- Combinatorial proofs
- Pigeonhole principle
- Binary encoding/stars and bars