Section 1

Review

1) **Sum rule.** If you can choose from EITHER one of \(n \) options, OR one of \(m \) options with NO overlap with the previous \(n \), then the number of possible outcomes of the experiment is ________________.

2) **Product rule.** In a sequential process with \(m \) steps, if there are \(n_1 \) choices for the 1st step, \(n_2 \) choices for the 2nd step (given the first choice), ..., and \(n_m \) choices for the \(m \)th step (given the previous choices), then the total number of outcomes is ________________.

3) **Permutations.** The number of ways to re-order \(n \) elements is ____________.

4) **Complementary counting.** If you can choose from \(n \) options, but \(m \) of these options are not desirable (and the rest are desirable), then the number of desirable options to choose from is ____________.

5) **\(k \)-permutations.** The number of ways to choose a sequence of \(k \) distinct elements from a set of \(n \) elements is ______.

The rest of these will be covered in class within the next two lectures:

6) **Subsets.** The number of ways to choose a \(k \)-element subset of a set of \(n \) elements is ____.

7) **Set difference.** Is it always true that \(|A\setminus B| = |A| - |B|\)?

8) **Binomial theorem.** \(\forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}: (x + y)^n = \sum_{k=0}^{n} x^k y^{n-k} \)

9) **Inclusion-exclusion.** \(|A \cup B| = |A| + |B| - |A \cap B| \).

10) **Inclusion-exclusion.** \(|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \).

Task 1 – Sets

a) For each one of the following sets, give its **cardinality**, i.e., indicate how many elements it contains:

- \(A = \emptyset \)
- \(B = \{\emptyset\} \)
- \(C = \{\{\emptyset\}\} \)
- \(D = \{\emptyset, \{\emptyset\}\} \)

b) Let \(S = \{a, b, c\} \) and \(T = \{c, d\} \). Compute:
Task 2 – Basic Counting

a) Credit-card numbers are made of 15 decimal digits, and a 16th checksum digit (which is uniquely determined by the first 15 digits). How many credit-card numbers are there?

b) How many positive divisors does $1440 = 2^5 \cdot 3^2 \cdot 5$ have?

c) How many ways are there to arrange the CSE 312 staff on a line (12 TAs, one professor) for a group picture?

d) How many ways are there to arrange the CSE 312 staff on a line so that Professor Lin is at one of the ends or exactly in the middle?

Task 3 – Seating

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if . . .

a) . . . all couples are to get adjacent seats?

b) . . . anyone can sit anywhere, except that one couple insists on not sitting in adjacent seats?

Task 4 – Lizards and Snakes!

Loudon has three pet lizards (Rango, a gecko named Gordon, and a goanna named Joanna) as well as two small pet snakes (Kaa and Basilisk) but only 4 terrariums to put them in. In how many different ways can he put his 5 pets in these 4 terrariums so that no terrarium has both a snake and a lizard?

Task 5 – Photographs

Suppose that 8 people, including you and a friend, line up for a picture. In how many ways can the photographer organize the line if she wants to have fewer than 2 people between you and your friend?

Task 6 – Weird Card Game

In how many ways can a pack of fifty-two cards (in four suits of thirteen cards each) be dealt to thirteen players, four to each, so that every player has one card from each of the suits?

Task 7 – Birthday Cake

A chef is preparing desserts for the week, starting on a Sunday. On each day, only one of five desserts (apple pie, cherry pie, strawberry pie, pineapple pie, and cake) may be served. On Thursday there is a birthday, so cake must be served that day. On no two consecutive days can the chef serve the same dessert. How many dessert menus are there for the week?
Task 8 – Extended Family Portrait

A group of n families, each with m members, are to be lined up for a photograph. In how many ways can the nm people be arranged if members of a family must stay together?

Task 9 – HBCDEFGA(Not Covered Yet)

How many ways are there to permute the 8 letters A, B, C, D, E, F, G, H so that A is not at the beginning and H is not at the end?