
Chapter 7. Statistical Estimation

7.5: Maximum A Posteriori Estimation
Slides (Google Drive) Alex Tsun Video (YouTube)

We’ve seen two ways now to estimate unknown parameters of a distribution. Maximum likelihood estimation
(MLE) says that we should find the parameter θ that maximizes the likelihood (“probability”) of seeing the
data, whereas the method of moments (MoM) says that we should match as many moments as possible
(mean, variance, etc.). Now, we learn yet another (and final) technique for estimation that will cover (there
are many more...).

7.5.1 Maximum A Posteriori (MAP) Estimation

Maximum a Posteriori (MAP) estimation is quite different from the estimation techniques we learned so
far (MLE/MoM), because it allows us to incorporate prior knowledge into our estimate. Suppose you
wanted to estimate the unknown probability of heads on a coin θ: using MLE, you may flip the head 20
times and observe 13 heads, giving an estimate of 13/20. But what if your friend had flipped the coin before
and observed 10 heads and 2 tails: how can you (formally) incorporate her information into your estimate?
Or what if you just believed in general that coins were more likely to be fair θ = 0.5 than unfair? We’ll see
how to do this below!

7.5.1.1 Intuition

In Maximum Likelihood Estimation (MLE), we used iid samples x = (x1, . . . , xn) from some distribution
with unknown parameter(s) θ, in order to estimate θ.

θ̂MLE = arg max
θ

L(x | θ) = arg max
θ

n∏
i=1

fX(xi | θ)

Note: Recall that, using the English description, how we found θ̂MLE is: we computed this likelihood, which
is the probability of seeing the data given the parameter θ, and we chose the “best” θ that maximized this
likelihood.

You might have been thinking: shouldn’t we be trying to maximize ”P (θ | x)” instead? Well, this doesn’t
make sense unless Θ is a R.V.! And this is where Maximum A Posteriori (MAP) Estimation comes in.

So far, for MLE and MoM estimation, we assumed θ was fixed but unknown. This is called the Frequentist
framework where we only estimate our parameter based on data alone, and θ is not a random variable.
Now, we are in the Bayesian framework, meaning that our unknown parameter is a random variable
Θ. This means, we will have some belief distribution πΘ(θ) (think of this as a density function over all
possible values of the parameter), and after observing data x, we will have a new/updated belief distribution
πΘ(θ | x). Let’s see a picture of what MAP is going to do first, before getting more into the math and
formalism.
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Example(s)

We’ll see the idea of MAP being applied to our typical coin example. Suppose we are trying to
estimate the unknown parameter for the probability of heads on a coin: that is, θ in Ber(θ). We
are going to treat the parameter as a random variable (before in MLE/MoM we treated it as a fixed
unknown quantity), so we’ll call it Θ (capitalized θ).

1. We must have a prior belief distribution πΘ(θ) over possible values that Θ could
take on.

The range of Θ in our case is ΩΘ = [0, 1], because the probability of heads must be in
this interval. Hence, when we plot the density function of Θ, the x-axis will range from 0 to 1.

On a piece of paper, please sketch a density function that you might have for this probability of
heads without yet seeing any data (coin flips). There are two reasonable shapes for this PDF:

• The Unif(0, 1) = Beta(1, 1) distribution (left picture below).

• Some Beta distribution where α = β, since most coins in this world are fair. Let’s say
Beta(11, 11); meaning we pretend we’ve seen 10 heads and 10 tails (right picture below).

2. We will observe some iid samples x = (x1, . . . , xn).

Again, for the Bernoulli distribution, these will be a sequence of n 1’s and 0’s repre-
senting heads or tails. Suppose we observed n = 30 samples, in which

∑n
i=1 xi = 25 were heads

and n−
∑n
i=1 xi = 5 were tails.

3. We will combine our prior knowledge and the data to create a posterior belief
distribution πΘ(θ | x).

Sketch two density functions for this posterior: one using the Beta(1, 1) prior above, and one
using the Beta(11, 11) prior above. We’ll compare these.

• If our prior distribution was Θ ∼ Beta(1, 1) (meaning we pretend we didn’t see anything
yet), then our posterior distribution should be Θ | x ∼ Beta(26, 6) (meaning we saw 25
heads and 5 tails total).
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• If our prior distribution was Θ ∼ Beta(11, 11) (meaning pretend we saw 10 heads and 10
tails beforehand), then our posterior distribution should be Θ | x ∼ Beta(36, 16) (meaning
we saw 35 heads and 15 tails total).

4. We’ll give our MAP estimate as the mode of this posterior distribution. Hence,
the name “Maximum a Posteriori”.

• If we used the Θ ∼ Beta(1, 1) prior, we ended up with the Θ | x ∼ Beta(26, 6) posterior,
and our MAP estimate is defined to be the mode of the distribution, which occurs at
θ̂MAP = 25

30 ≈ 0.833 (left picture above). You may notice that this would give the same as
the MLE: we’ll examine this more later!

• If we used the Θ ∼ Beta(11, 11) prior, we ended up with the Θ | x ∼ Beta(36, 16) posterior,

our MAP estimate is defined to be the mode of the distribution, which occurs at θ̂MAP =
35
50 = 0.70 (right picture above).

Hopefully you now see the process and idea behind MAP: We have a prior belief on our unknown
parameter, and after observing data, we update our belief distribution and take the mode (most likely
value)! Our estimate definitely depends on the prior distribution we choose (which is often arbitrary).

7.5.1.2 Derivation

We chose a Beta prior, and ended up with a Beta posterior, which made sense intuitively given our definition
of the Beta distribution. But how do we prove this? We’ll see the math behind MAP now (quite short), and
see the same example again but mathematically rigorous now.

MAP Idea: Actually, unknown parameter(s) is a random variable Θ. We have a prior distribution (prior
belief on Θ before seeing data) πΘ(θ) and posterior distribution (given data; updated belief on Θ after
observing some data) πΘ(θ | x).

By Bayes’ Theorem,

πΘ(θ | x) =
L(x | θ)πΘ(θ)

P (x)
∝ L(x | θ)πΘ(θ)
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Recall that πΘ is just a PDF or PMF over possible values of Θ. In other words, now we are maximizing
the posterior distribution πΘ(θ | x), where Θ has a PMF/PDF. That is, we are finding the mode of the
density/mass function. Note that since the denominator P (x) in the expression above does not depend on
θ, we can just maximize the numerator L(x | θ)πΘ(θ)! Therefore:

θ̂MAP = arg max
θ

πΘ(θ | x) = arg max
θ

L(x | θ)πΘ(θ)

Definition 7.5.1: Maximum A Posteriori (MAP) Estimation

Let x = (x1, . . . , xn) be iid realizations from probability mass function pX(t ; Θ = θ) (if X discrete),
or from density fX(t ; Θ = θ) (if X continuous), where Θ is the random variable representing the

parameter (or vector of parameters). We define the Maximum A Posteriori (MAP) estimator θ̂MAP

of Θ to be the parameter which maximizes the posterior distribution of Θ given the data.

θ̂MAP = arg max
θ

πΘ(θ | x) = arg max
θ

L(x | θ)πΘ(θ)

That is, it’s exactly the same as maximum likelihood, except instead of just maximizing the likelihood,
we are maximizing the likelihood multiplied by the prior!

Now we’ll see a similar coin-flipping example, but deriving the MAP estimate mathematically and building
even more intuition. I encourage you to try each part out before reading the answers!

7.5.1.3 Example

Example(s)

(a) Suppose our samples are x = (0, 0, 1, 1, 0), from Ber(θ), where θ is unknown. Assume θ is
unrestricted; that is, θ ∈ (0, 1). What is the MLE for θ?

(b) Suppose we impose the restriction that θ ∈ {0.2, 0.5, 0.7}. What is the MLE for θ?

(c) Assume Θ is restricted as in part (b) (but now a random variable for MAP). Suppose we have
a (discrete) prior πΘ(0.2) = 0.1, πΘ(0.5) = 0.01, and πΘ(0.7) = 0.89. What is the MAP for θ?

(d) Show that we can make the MAP whatever we like, by finding a prior over {0.2, 0.5, 0.7} so
that the MAP is 0.2, another so that it is 0.5, and another so that it is 0.7.

(e) Typically, for the Bernoulli/Binomial distribution, if we use MAP, we want to be able to get
any value ∈ (0, 1), not just ones in a finite set such as {0.2, 0.5, 0.7}. So we need a (continuous)
prior distribution with range (0, 1) instead of our discrete one. We assign Θ ∼ Beta(α, β)
with parameters α, β > 0 and density πΘ(θ) = 1

B(α,β)θ
α−1(1 − θ)β−1 for θ ∈ (0, 1). Recall the

mode of a W ∼ Beta(α, β) random variable is α−1
(α−1)+(β−1) (the mode is the value with highest

density arg maxw fW (w)).

Suppose x1, . . . , xn are iid from a Bernoulli distribution with unknown parameter. Recall the
MLE is k

n , where k =
∑
xi (the total number of successes). Show that the posterior πΘ(θ | x)

has a Beta(k + α, n− k + β) distribution, and find the MAP estimator.
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(f) Recall that Beta(1, 1) ≡ Unif(0, 1) (pretend we saw 1− 1 heads and 1− 1 tails ahead of time).
If we used this as the prior, how would the MLE and MAP compare?

(g) Since the posterior is also a Beta Distribution, we call Beta the conjugate prior to the Bernoul-
li/Binomial distribution’s parameter p. Interpret α, β as to how they affect our estimate. This
is a really special property: if the prior distribution multipled by the likelihood results in a pos-
terior distribution in the same family (with different parameters), then we say that distribution
is the conjugate prior to the distribution we are estimating.

(h) As the number of samples goes to infinity, what is the relationship between the MLE and MAP?
What does this say about our prior when n is small, or n is large?

(i) Which do you think is ”better”, MLE or MAP?

Solution

(a) Suppose our samples are x = (0, 0, 1, 1, 0), from Ber(θ), where θ is unknown. Assume θ is unrestricted;
that is, θ ∈ (0, 1). What is the MLE for θ?

• Answer: 2
5 . We just find the likelihood of the data, which is the probability of observing 2 heads

and 3 tails, and find the θ that maximizes it.

L(x | θ) = θ2(1− θ)3

θ̂MLE = arg maxθ∈[0,1] θ
2(1− θ)3 = 2

5

(b) Suppose we impose the restriction that θ ∈ {0.2, 0.5, 0.7}. What is the MLE for θ?

• Answer: 0.5. We need to find which of the three acceptable θ values maximizes the likelihood,
and since there are only finitely many, we can just plug them all in and compare!

L(x | 0.2) = (0.220.83) = 0.02048
L(x | 0.5) = (0.520.53) = 0.03125
L(x | 0.7) = (0.720.33) = 0.01323

θ̂MLE = arg maxθ∈{0.2,0.5,0.7} L(x | θ) = 0.5

(c) Assume Θ is restricted as in part (b) (but now a random variable for MAP). Suppose we have a
(discrete) prior πΘ(0.2) = 0.1, πΘ(0.5) = 0.01, and πΘ(0.7) = 0.89. What is the MAP for θ?

• Answer: 0.7. Instead of maximizing just the likelihood, we need to maximize the likelihood times
the prior. Again, since there are only finitely many values, we just plug them in!

πΘ(0.2 | x) = L(x | 0.2)πΘ(0.2) = (0.220.83)(0.1) = 0.0020480
πΘ(0.5 | x) = L(x | 0.5)πΘ(0.5) = (0.520.53)(0.01) = 0.0003125
πΘ(0.7 | x) = L(x | 0.7)πΘ(0.7) = (0.720.33)(0.89) = 0.0117747

Note the effect of this prior - by setting πΘ(0.7) so high and the other two values, we actually get
a different maximizer. This is the effect of the prior on the MAP estimate (which was completely
arbitrary)!
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(d) Show that we can make the MAP whatever we like, by finding a prior over {0.2, 0.5, 0.7} so that the
MAP is 0.2, another so that it is 0.5, and another so that it is 0.7.

• Answer: Choose πΘ(θ) = 1 for the θ you want! This shows that the prior really does make a
difference, and that MAP and MLE are indeed different techniques.

(e) Typically, for the Bernoulli/Binomial distribution, if we use MAP, we want to be able to get any value
∈ (0, 1), not just ones in a finite set such as {0.2, 0.5, 0.7}. So we need a (continuous) prior distribution
with range (0, 1) instead of our discrete one. We assign Θ ∼ Beta(α, β) with parameters α, β > 0 and
density πΘ(θ) = 1

B(α,β)θ
α−1(1 − θ)β−1 for θ ∈ (0, 1). Recall the mode of a W ∼ Beta(α, β) random

variable is α−1
(α−1)+(β−1) (the mode is the value with highest density arg maxw fW (w)).

Suppose x1, . . . , xn are iid from a Bernoulli distribution with unknown parameter. Recall the MLE
is k

n , where k =
∑
xi (the total number of successes). Show that the posterior πΘ(θ | x) has a

Beta(k + α, n− k + β) distribution, and find the MAP estimator.

• Answer: θ̂MAP = k+(α−1)
n+(α−1)+(β−1) . We first have to write out what the posterior distribution is,

which is proportional to just the prior times the likelihood:

πΘ(θ | x) ∝ L(x | θ) · πΘ(θ)

=

((
n

k

)
θk(1− θ)n−k

)
·

(
1

B(α, β)
θα−1(1− θ)β−1

)

∝ θ(k+α)−1(1− θ)(n−k+β)−1

The first to second line comes from noticing L(x | θ) is just the probability of seeing exactly k
successes out of n (binomial PMF), and plugging in our equation for πΘ (beta density). The
second to third line comes from dropping the normalizing constants (that don’t depend on θ),
which we can do because we only care to maximize this over θ. If you stare closely at that last
equation, it actually proportional to the PDF of a Beta distribution with different parameters!
Our posterior is hence Beta(k + α, n − k + β) since PDFs uniquely define a distribution (there
is only one normalizing constant that would make it integrate to 1). The MAP estimator is the
mode of this posterior Beta distribution, which is given by the formula:

θ̂MAP =
k + α− 1

(k + α− 1) + (n− k + β − 1)
=

k + (α− 1)

n+ (α− 1) + (β − 1)

Try staring at this to see why this might make sense. We’ll explain it more in part (g)!

(f) Recall that Beta(1, 1) ≡ Unif(0, 1) (pretend we saw 1 − 1 heads and 1 − 1 tails ahead of time). If we
used this as the prior, how would the MLE and MAP compare?

• Answer: They would be the same! From our previous question, if α = β = 1, then

θ̂MAP =
k + (α− 1)

n+ (α− 1) + (β − 1)
=
k

n
= θ̂MLE

This is because we don’t have any prior information essentially, by saying each value is equally
likely!



7.5 Probability & Statistics with Applications to Computing 7

(g) Since the posterior is also a Beta Distribution, we call Beta the conjugate prior to the Bernoulli/Bi-
nomial distribution’s parameter p. Interpret α, β as to how they affect our estimate. This is a really
special property: if the prior distribution multipled by the likelihood results in a posterior distribution
in the same family (with different parameters), then we say that distribution is the conjugate prior to
the distribution we are estimating.

• Answer: The interpretation is: pretend we saw α− 1 heads ahead of time, and β − 1 tails ahead
of time. Then our total number of heads is k + (α − 1) (real + fake) and our total number of
trials is n + (α + β − 2) (real + fake), so that’s our estimate! That’s how prior information was
factored in to our estimator, rather than just using what we actually saw in the data.

(h) As the number of samples goes to infinity, what is the relationship between the MLE and MAP? What
does this say about our prior when n is small, or n is large?

• Answer: They become equal! The prior is important if we don’t have much data, but as we get
more, the evidence overwhelms the prior. You can imagine that if we only flipped the coin 5
times, the prior would play a huge role in our estimate. But if we flipped the coin 10,000 times,
any (small) prior wouldn’t really change our estimate.

(i) Which do you think is “better”, MLE or MAP?

• Answer: There is no right answer. There are two main schools in statistics: Bayesians and
Frequentists.

• Frequentists prefer MLE since they don’t believe you should be putting a prior belief on anything,
and you should only make judgment based on what you’ve seen. They believe the parameter
being estimated is a fixed quantity.

• On the other hand, Bayesians prefer MAP, since they can incorporate their prior knowledge into
the estimation. Hence the parameter being estimated is a random variable, and we seek the
mode - the value with the highest probability or density. An example would be estimating the
probability of heads of a coin - is it reasonable to assume it is more likely fair than not? If so,
what distribution should we put on the parameter space?

• Anyway, in the long run, the prior “washes out”, and the only thing that matters is the likelihood;
the observed data. For small sample sizes like this, the prior significantly influences the MAP
estimate. However, as the number of samples goes to infinity, the MAP and MLE are equal.

7.5.2 Exercises

1. Let x = (x1, . . . , xn) be iid samples from Exp(Θ) where Θ is a random variable (not fixed). Note that
the range of Θ should be ΩΘ = [0,∞) (the average rate of events per unit time), so any prior we choose
should have this range.

(a) Using the prior Θ ∼ Gamma(r, λ) (for some arbitrary but known parameters r, λ > 0), show that
the posterior distribution Θ | x also follows a Gamma distribution and identify its parameters (by
computing πΘ(θ | x)). Then, explain this sentence: “The Gamma distribution is the conjugate
prior for the rate parameter of the Exponential distribution”. Hint: This can be done in just a
few lines!
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(b) Now derive the MAP estimate for Θ. The mode of a Gamma(s, ν) distribution is
s− 1

ν
. Hint:

This should be just one line using your answer to part (a).

(c) Explain how this MAP estimate differs from the MLE estimate (recall for the Exponential distri-

bution it was just the inverse sample mean
n∑n
i=1 xi

), and provide an interpretation of r and λ as

to how they affect the estimate.

Solution:

(a) Remember that the posterior is proportional to likelihood times prior, and the density of Y ∼
Exp(θ) is fY (y | θ) = θe−θy:

πΘ(θ | x) ∝ L(x | θ)πΘ(θ) [def of posterior]

=

(
n∏
i=1

θe−θxi

)
· λr

(r − 1)!
θr−1e−λθ [def of Exp(θ) likelihood + Gamma(r, λ) pdf]

∝ θne−θ
∑
xiθr−1e−λθ [algebra, drop constants]

= θ(n+r)−1e−(λ+
∑
xi)θ

Therefore Θ | x ∼ Gamma(n + r, λ +
∑
xi), since the final line above is proportional to the pdf

for the gamma distribution (minus normalizing constant).

It is the conjugate prior because, assuming a Gamma prior for the Exponential likelihood, we
end up with a Gamma posterior. That is, the prior and posterior are in the same family of
distributions (Gamma) with different parameters.

(b) Just citing the mode of a Gamma given, we get

θ̂MAP =
n+ r − 1

λ+
∑
xi

(c) We see how the estimate changes from the MLE of θ̂MLE =
n∑
xi

: pretend we saw r − 1 extra

events over λ units of time. (Instead of waiting for n events, we waited for n+ r− 1, and instead
of
∑
xi as our total time, we now have λ+

∑
xi units of time).
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