
Chapter 5. Multiple Random Variables

5.10: Order Statistics
Slides (Google Drive) Alex Tsun Video (YouTube)

We’ve talked a lot about the distribution of the sum of random variables, but what about the maximum,
minimum, or median? For example, if there are 4 possible buses you could take, and the time until each
arrives is independent with an exponential distribution, what is the expected time until the first one arrives?
Mathematically, this would be E [min{X1, X2, X3, X4}] if the arrival times were X1, X2, X3, X4.

In this section, we’ll figure out how to find out the density function (and hence expectation/variance) of the
minimum, maximum, median, and more!

5.10.1 Order Statistics

We’ll first formally define order statistics.

Definition 5.10.1: Order Statistics

Suppose Y1, ..., Yn are iid continuous random variables with common PDF fY and common CDF
FY . We define Y(1), Y(2), . . . , Y(n) to be the sorted version of this sample. That is,

Ymin ≡ Y(1) < Y(2) < ... < Y(n) ≡ Ymax

Y(1) is the smallest value (the minimum), and Y(n) is the largest value (the maximum), and since
they are so commonly used, they have special names Ymin and Ymax respectively.

Notice that we can’t have equality because with continuous random variables, the probability that
any two are equal is 0. So, we don’t have to worry about any of these random variables being “less
than or equal to” another.

Notice that each Y(i) is a random variable as well! We call Y(i) the i-th order statistic, i.e. the
i-th smallest in a sample of size n. For example, if we had n = 9 samples, Y(5) would be the median
value. We are interested in finding the distribution of each order statistic, and properties such as
expectation and variance as well.

Why are order statistics important? Usually, we take the min, max or median of a set of random variables
and do computations with them - so, it would be useful if we had a general formula for the PDF and CDF
of the min or max.

We start with an example to find the distribution of Y(n) = Ymax, the largest order statistic. We’ll then
extend this to any of the order statistics (not just the max). Again, this means, if we were to repeatedly
take the maximum of n iid RVs, what would the samples look like?
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https://docs.google.com/presentation/d/1FHUmJzJ9kzLov-V283XgmOYrb-i3HbA9fxttW4esS80/edit
https://www.youtube.com/watch?v=zdhlBkIdhb8&list=PLeB45KifGiuHesi4PALNZSYZFhViVGQJK&index=29&ab_channel=5MinuteAI
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Example(s)

Let Y1, Y2, . . . , Yn be iid continuous random variables with the same CDF FY and PDF fY . What is
the distribution of Y(n) = Ymax = max{Y1, Y2, . . . , Yn} the largest order statistic?

Solution

We’ll employ our typical strategy and work with probabilities instead of densities, so we’ll start with the
CDF:

FYmax
(y) = P (Ymax ≤ y) [def of CDF]

= P

(
n⋂

i=1

{Yi ≤ y}

)
[max is ≤ y if and only if all are]

=

n∏
i=1

P (Yi ≤ y) [independence]

=

n∏
i=1

FY (y) [def of CDF]

= Fn
Y (y) [identically distributed, all have same CDF]

We can differentiate the CDF to find the PDF:

fYmax(y) = F ′Ymax
(y)

=
d

dy
(Fn

Y (y))

= nFn−1
Y (y)fY (y) [chain rule of calculus and

d

dx
xn = nxn−1]

Let’s take a step back and see what we just did here. We just computed the density function of the maximum
of n iid random variables, denoted Ymax = Y(n). We now need to find the density of any arbitrary ranked
Y(i).

Theorem 5.10.1: Order Statistics

Suppose Y1, ..., Yn are iid continuous random variables with common PDF fY and common CDF
FY . We define Y(1), Y(2), . . . , Y(n) to be the sorted version of this sample. That is,

Ymin ≡ Y(1) < Y(2) < ... < Y(n) ≡ Ymax

. The density function of Y(i) is

fY(i)
(y) =

(
n

i− 1, 1, n− i

)
· [FY (y)]i−1 · [1− FY (y)]n−i · fY (y), y ∈ ΩY

Now, using the same intuition as before, we’ll use an informal argument to find the density of a general Y(i),
fY(i)

(y). For example, this might help find the distribution of the minimum fY(1)
or the median.
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Proof of Density of Order Statistics. The formula above may remind you of a multinomial distribution, and
you would be correct! Let’s consider what it means for Y(i) = y (the i-th smallest value in the sample of n
to equal a particular value y).

• One of the values needs to be exactly y

• i− 1 of the values need to be smaller than y (this happens for each with probability FY (y))

• the other n− i values need to be greater than y (this happens for each with probability 1− FY (y)

Now, we have 3 distinct types of objects: 1 that is exactly y, i− 1 which are less than y and n− i which are
greater. Using multinomial coefficients and the above, we see that

fY(i)
(y) =

(
n

i− 1, 1, n− i

)
· [FY (y)]i−1 · [1− FY (y)]n−i · fY (y)

Note that this isn’t a probability; it is a density, so there is something flawed with how we approached this
problem. For a more rigorous approach, we just have to make a slight modification, but use the same idea.

Re-Proof (Rigorous) This time, we’ll find P
(
y − ε

2 ≤ Y(i) ≤ y + ε
2

)
and use the fact that this is approxi-

mately equal to εfY(i)
(y) for small ε > 0 (Riemann integral (rectangle) approximation from 4.1).

We have very similar cases:

• One of the values needs to be between y − ε
2 and y + ε

2 (this happens with probability approximately
εfY (y), again by Riemann approximation).

• i− 1 of the values need to be smaller than y − ε
2 (this happens for each with probability FY (y − ε

2 ))

• the other n−i values need to be greater than y+ ε
2 (this happens for each with probability 1−FY (y+ ε

2 ))

Now these are actually probabilities (not densities), so we get

P
(
y − ε

2
≤ Y(i) ≤ y +

ε

2

)
≈ εfY(i)

(y) =

(
n

i− 1, 1, n− i

)
· [FY (y)]i−1 · [1− FY (y)]n−i · (εfY (y))

Dividing both sides by ε > 0 gives the same result as earlier!

Let’s verify this formula with our maximum that we derived earlier by plugging in n for i:

fYmax(y) = fY(n)
(y) =

(
n

n− 1, 1, 0

)
· [FY (y)]n−1 · [1− FY (y)]0 · fY (y) = nFn−1

Y (y)fY (y)

Example(s)

If Y1, ..., Yn are iid Unif(0, 1), where do we “expect” the points to end up? That is, find
E
[
Y(i)
]

for any i. You may find this picture with different values of n useful for intuition.
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Solution

Intuitively, from the picture, if n = 1, we expect the single point to end up at 1
2 . If n = 2, we expect the

two points to end up at 1
3 and 2

3 . If n = 4, we expect the four points to end up at 1
5 , 2

5 , 3
5 and 4

5 .

Let’s prove this formally. Recall, if Y ∼ Unif(0, 1) (continuous), then fY (y) = 1 for y ∈ [0, 1] and FY (y) = y
for y ∈ [0, 1]. By the order statistics formula,

fY(i)
(y) =

(
n

i− 1, 1, n− i

)
· [FY (y)]i−1 · [1− FY (y)]n−i · fY (y)

=

(
n

i− 1, 1, n− i

)
· [y]i−1 · [1− y]n−i · 1

Using the PDF, we find the expectation:

E
[
Y(i)
]

=

∫ 1

0

y

(
n

i− 1, 1, n− i

)
· [y]i−1 · [1− y]n−idy =

i

n+ 1

Here is a picture which may help you figure out what the formulae you just computed mean!

Now let’s do our bus example from earlier.



5.10 Probability & Statistics with Applications to Computing 5

Example(s)

At 5pm each day, four buses make their way to the HUB bus stop. Each bus would be acceptable
to take you home. The time in hours (after 5pm) that each arrives at the stop is independent with
Y1, Y2, Y3, Y4 ∼ Exp(λ = 6) (on average, it takes 1/6 of an hour (10 minutes) for each bus to arrive).

1. On Mondays, you want to get home ASAP, so you arrive at the bus stop at 5pm sharp. What
is the expected time until the first one arrives?

2. On Tuesdays, you have a lab meeting that runs until 5:15 and are worried you may not catch
any bus. What is the probability you miss all the buses?

Solution The first question asks about the smallest order statistic Y(1) = Ymin since we care about the first
bus. The second question asks about the largest order statistic Y(4) since we care about the last bus. Let’s
compute the general formula for order statistics first so we can apply it to both parts of the problem.

Recall, if Y ∼ Exp(λ = 6) (continuous), then fY (y) = 6e−6y for y ∈ [0,∞) and FY (y) = 1 − e−6y for
y ∈ [0,∞). By the order statistics formula,

fY(i)
(y) =

(
n

i− 1, 1, n− i

)
· [FY (y)]i−1 · [1− FY (y)]n−i · fY (y)

=

(
n

i− 1, 1, n− i

)
· [1− e−6y]i−1 · [e−6y]n−i · 6e−6y

1. For the first part, we want E
[
Y(1)

]
, so we plug in i = 1 (and n = 4) to the above formula to get:

fY(1)
(y) =

(
4

1− 1, 1, 4− 1

)
· [1− e−6y]1−1 · [e−6y]4−1 · 6e−6y = 4[e−18y]6e−6y = 24e−24y

Now we can use the PDF to find the expectation normally. However, notice that the PDF is that of
an Exp(λ = 24) distribution, so it has expectation 1/24. That is, the expected time until the first bus
arrives is 1/24 an hour, or 2.5 minutes.

Let’s talk about something amazing here. We found that min{Y1, Y2, Y3, Y4} ∼ Exp(λ = 4 ·6); that the
minimum of exponentials is distributed as an exponential with the sum of the rates! Why might this
be true? If we have Y1, Y2, Y3, Y4 ∼ Exp(6), that means on average, 6 buses of each type arrive each
hour, for a total of 24. That just means we can model our waiting time in thie regime with an average
of 24 buses per hour, to get that the time until the first bus has an Exp(6 + 6 + 6 + 6) distribution!

2. For finding the maximum, we just plug in i = n = 4 (and n = 4), to get

fY(4)
(y) =

(
4

4− 1, 1, 4− 4

)
· [1− e−6y]4−1 · [e−6y]4−4 · 6e−6y = [1− e−6y]36e−6y

Unfortunately, this is as simplified as it gets, and we don’t get the nice result that the maximum of
exponentials is exponential. To find the desired quantity, we just need to compute the probability the
last bus comes before 5:15 (which is 0.25 hours - be careful of units!):

P (Ymax ≤ 0.25) =

∫ 0.25

0

fYmax
(y)dy =

∫ 0.25

0

[1− e−6y]36e−6ydy
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