Alex Tsun PSet #3
CSE 312: Foundations of Computing II

PSet #3

With problems from several past UW CSE 312 instructors (Martin Tompa, Anna Karlin, Larry Ruzzo) and Stanford
CS 109 instructors (Chris Piech, David Varodayan, Lisa Yan, Mehran Sahami)

Groups: This pset may be done in groups of up to 2 people. This means that if you work with a
partner, only one person will submit on Gradescope to “PSet 3 [Written]” and add their partner as a
collaborator. For this pset, you may also work on the [Coding] part in your pair. The pair must be
the same pair as the [Written]. Individuals and groups are encouraged to discuss problem-solving
strategies with other classmates as well as the course staff, but each group must write up their own
solutions.

Instructions: For each problem, remember you must briefly explain/justify how you obtained your
answer, as correct answers without an explanation will receive no credit. Moreover, in the event
of an incorrect answer, we can still try to give you partial credit based on the explanation you
provide. It is fine for your answers to include summations, products, factorials, exponentials, or
combinations; you dont need to calculate those all out to get a single numeric answer.

Submission: You must upload your written compiled LaTeX PDF to Gradescope under “PSet 3
[Written]” and your two code files bloom.py and dist_elts.py to “PSet3 [Coding]”. You must
tag your written problems on Gradescope, or you will receive no credit as mentioned in the syllabus.
Please cite any collaboration at the top of your submission (beyond your group members, which
should already be listed).

1. Alex wants to be famous, so he came up with this new “Triangle Distribution”. For real
numbers a < b < ¢, he says a (continuous) random variable T ~ Triangle(a, b, c) if it has
range [a, c], with a peak at b. Suppose X ~ Triangle(1,4,5) (see figure below).

Figure 1: The PDF of X ~ Triangle(1,4,5)
}

r
-
1

2

(a) Find the probability density function fx(x) (for X ~ Triangle(1,4,5)). To get full-
credit, make sure you define it for all real numbers, by possibly using a piecewise
function. (Hint: Start by figuring out what the peak value is at x = 4 using geometry.)

(b) Find the cumulative distribution function F (x). To get full-credit, make sure you define
it for all real numbers, by possibly using a piecewise function. (Hint: Instead of using
integrals, use what you know about geometry.)

(¢) Compute E[X] and Var(X). Carefully set up the integrals with clearly defined inte-
grands and limits of integration. Then additionally give your answer to 4 decimal places
either solving it yourself or using WolframAlpha.

(d) Compute the median of X: the median of a distribution is the point m € Qx where
Fx(m) = 0.5 (so half the area is to the left, and half the area is to the right). Show your
work and give your answer rounded to 4 decimal places.

(e) Compute the mode of X. The mode of a random variable is the point z € Qx with
highest probability (if discrete), or the point with highest density (if continuous). Give
your answer rounded to 4 decimal places. (Hint: You don’t actually have to do any
computation for this problem!).

2. A flea of negligible size is trapped in a large, spherical, inflated beach ball with radius r. At
this moment, it is equally likely to be at any point within the ball. Let X be the distance of
the flea from the center of the ball. Your answers for the following questions will be in terms
of r.

(a) Find the cumulative distribution function Fy (x). To get full-credit, make sure you define
it for all real numbers, by possibly using a piecewise function. (Hint: The volume of a
sphere with radius 7 is %m@).

(b) Find the probability density function fx(x). To get full-credit, make sure you define it
for all real numbers, by possibly using a piecewise function.

(¢c) Compute E[X] and Var(X). Carefully set up the integrals with clearly defined inte-
grands and limits of integration. Then evaluate your integrals and give both quantities
in terms of the radius r.

3. Alex computes final course grades in a large CSE 312 class as arbitrary real numbers, with
most of them in the interval [0.0, 4.0]. He computes them so that the students’ grades are
normally distributed with some mean u and variance o2, parameters that he keeps secret
out of fear of a student revolution. If 6.68% of students get a grade of 3.8 or greater and
59.87% of students get a grade less than 2.8, what proportion of students got a grade less
than 2.0? Show your work and give your answer rounded to 4 decimal places. (To help you
avoid calculation errors, as a check of your calculation we will tell you that 4 and o are each
integer multiples of 0.1.)

4. Suppose the time that Java takes to sort a 1,000,000 length array is approximately J ~ N (u =
46, 0% = 6%) milliseconds (ms), since it uses the (randomized) QuickSort Algorithm.

(a) Python initially implements a (deterministic) MergeSort Algorithm, and it always fin-
ishes in P = 49 ms. What is the probability that Java sorts a single 1,000,000 length

(b)

(©

(d)

array faster than Python does? Show your work and give your answer rounded to 4
decimal places.

Python attempts to implement QuickSort as well, but did it less efficiently. Its runtime
is approximately P ~ N (u = 55,0 = 82). What is the probability that Java sorts a
single 1,000,000 length array faster than Python does? Show your work and give your
answer rounded to 4 decimal places.

Keep the updated Python runtime assumptions from part (b). We compare Python and
Java in a marathon race. We have 9 independent “games”, and each game consists of
sorting a 1,000,000 length array. The winner is the language who wins in at least 5 of 9
games. What is the probability that Java wins? Show your work and give your answer
rounded to 4 decimal places.

Keep the updated Python runtime assumptions from part (b). We compare Python and
Java in a marathon race. We have 9 arrays, and we ask Java and Python to sort all 9
arrays, sequentially one at a time (independently). What is the probability that Java
sorts 9 arrays before Python does? Show your work and give your answer rounded to 4
decimal places.

5. You have n batteries, each with a lifetime which is (independently) distributed as Exp(A).
You have a choice of a weak flashlight, which requires one battery to operate, and a strong
flashlight, which requires two batteries to operate. Assume that when a battery dies, you are
lightning-quick and replace it with a new battery instantly.

(a)

(b)

()

(d)

If you choose to use the weak flashlight, what is the expected amount of time you
can operate it for? (Hint: Cite the appropriate distribution, and your solution will be
one-line.)

Recall the memoryless property in lecture 4.2. Suppose W ~ Exp (). Show that you
understand what it means by computing P(W > 17|W > 10) explicitly using this
property (do NOT reprove memorylessness).

For the strong flashlight, we need to compute the distribution of time until the first of
the two batteries dies. If X,Y ~ Exp(A), show that the distribution of Z = min{X, Y}
is Exp(24). (Hint: Start by computing P(Z > z), then use this to compute either the
CDF or PDF).

If you choose to use the strong flashlight, what is the expected amount of time you can
operate it for? Recall that if you currently have two batteries in the flashlight and one
dies, you immediately replace the dead battery with a new one. (Hint: Use your answer
to part (c) and what you learned in part (b)).

6. Aleks has written a Python function gen_unif(a, b) that gives a random sample from
the continuous Unif(a,b) distribution. However, what Aleks really wants is a function
gen_exp (lambduh) that takes a parameter A (lambduh as written in the code) and returns a
sample from the Exp(A) distribution.

Aleks is lazy, and thus thinks that he can code this new function in only one line and utilizing
his function gen_unif(a, b). To do this, he’ll need to “transform” a sample of a uniform
distribution into that of an exponential distribution.

(a)

(b)

()

(d)

_4-

Let X ~ Unif(0, 1) be a continuous uniform random variable. Show that Z = g(X) =
_/ll In(1-X) ~ Exp(Q). Aleks specifically wants you to show this using the CDF
transformation method, by computing F(z).

Aleks is only 90% sure his math was correct from earlier and still isn’t convinced. Now
he wants you to show the same thing (that Z = g(X) = —% In(1-X) ~ Exp(Q)),

this time using the explicit formula from section 4.4 to compute fz(z). Make sure to
explicitly verify the monotonicity and invertibility criteria.

Now that we’ve verified that this transformation is “legit”, help Aleks translate it into
code! Write the Python function gen_exp(lambduh) using only gen_unif(a, b)
to generate randomness. It should only be ONE LINE, and you may use np.log to
compute the natural logarithm.

def gen_exp(lambduh:float) -> float:
Your one-line of code here.

Note that the transformation we applied to X was the inverse of the CDF of the
exponential distribution (if ¥ ~ Exp(1), then Fy(y) = 1 — e for y > 0 and the

1
inverse CDF is g(y) = F;l(y) =7 In(1-y).)

This process, in fact, works for any arbitrary continuous distribution! Explain how to
generate a sample from a continuous distribution 7', given only its CDF Fr and access to
a single sample from X ~ Uni f (0, 1). Explain why this process makes sense intuitively
as well in AT MOST 2-3 sentences. (Hint: It’s similar to the previous part!)

7. Choose a number X uniformly at random from the set of numbers {1, 2, 3,4, 5}. Now choose
a number uniformly at random from the subset no larger than X, that is from {1, ..., X}. Let
Y denote the second number chosen.

(a)

(b)

(©

(d)

Fill out the joint probability mass function pxy(x,y) in Figure 2. Either put fully
simplified fractions or numbers to four decimal places. Also, give the joint range
Qyxy. (Recall an appropriate notation for the joint range would be something like
Qxy ={(x,y) € Qx X Qy : some condition is true}.)

Fill out the margins of the table in Figure 2, representing the marginal probability mass
functions px(x) and py(y). Either put fully simplified fractions or numbers to four
decimal places. Your marginal distribution of X should be very simple (reread the first
sentence of this question).

Fill out the conditional probability mass function pxy(x|y) = P(X = x|Y = y) in
Figure 3. Either put fully simplified fractions or numbers to four decimal places. Should
each row sum to 1 or each column sum to 17?

Are X and Y independent? Justify your answer with the definition of independence,
and either prove it or give a counterexample. An intuitive or English-only answer will
not receive credit.

Figure 2: Joint PMF px y(x,y)

X\Y 1 2 3 4 5 Row Totals
1 TODO | TODO | TODO | TODO | TODO TODO
2 TODO | TODO | TODO | TODO | TODO TODO
3 TODO | TODO | TODO | TODO | TODO TODO
4 TODO | TODO | TODO | TODO | TODO TODO
5 TODO | TODO | TODO | TODO | TODO TODO
Col Totals | TODO | TODO | TODO | TODO | TODO 1

Figure 3: Conditional PMF p x|y (x[y)

X\Y 1 2 3 4 5
1 TODO | TODO | TODO | TODO | TODO
2 | TODO | TODO | TODO | TODO | TODO
3 TODO | TODO | TODO | TODO | TODO
4 | TODO | TODO | TODO | TODO | TODO
5 TODO | TODO | TODO | TODO | TODO

8. Consider a series of strings that independently get hashed into a hash table. Each such string
can be sent to any one of k + 1 buckets (numbered from O to k). Let index i denote the
i"" bucket. A string will independently get hashed to bucket i with probability p;, where
Zl’.‘zo pi = 1 (so not necessarily uniformly!). Let N denote the number of strings that are
hashed up to and including when one is hashed to any bucket other than bucket 0. Let X be
the number of that bucket (i.e. the bucket not numbered O that receives a string).

(a) Find Qpy and a general formula for py(n).

(b) Find Qx and a general formula for px (x).

(c) Compute a general formula for py x(n,x) by determining what it means for N = n
and X = x simultaneously. Are N and X independent? Justify your answer with the
definition of independence, and either prove it or give a counterexample. An intuitive
or English-only answer will not receive credit.

9. Suppose (X, Y) have the joint continuous distribution with joint density

607 x2<y<4
cx’e x“<y<
X, y) = .
Fxx(x.) {0 otherwise
(a) Sketch the joint range 2x y, and label the boundaries with the equations of the formu-
lae. (You may attach a screenshot from WolframAlpha’s RegionPlot - type in “Region-
Plot[x>0 && y >0 && y<1-x]” for example).

_6—

(b) Give an expression for the value of c. Carefully set up the integrals with clearly
defined integrands and limits of integration. Then additionally give your answer to
4 decimal places either solving it yourself or using WolframAlpha. Google search for
"WolframAlpha double integral calculator".

(c) Compute the marginal densities fx(x) and fy(y). Be sure to use piecewise functions
for fx(x) and fy(y) and for each identify the ranges Qx and Qy.

(d) Are X and Y independent? Justify your answer with the definition of independence,
and either prove it or give a counterexample. An intuitive or English-only answer will
not receive credit.

(e) Give an expression for E[log|tan~! (X +Y)|]. That is the log of the absolute value
of the arctan of X + Y. This may not be a particularly relevant value, but you should
apply what you know and set up the integral. Carefully set up the integrals with clearly
defined integrands and limits of integration. You do NOT need to evaluate your answer
for this part.

(f) Give an expression for P(X > Y). Carefully set up the integrals with clearly defined
integrands and limits of integration. Then additionally give your answer to 4 decimal
places either solving it yourself or using WolframAlpha. (Hint: Draw/visualize this
region on your joint range from part (a)!)

10. [Coding+Written]| Google Chrome has a huge database of malicious URLs, but it takes a

long time to do a database lookup (think of this as a typical Set). They want to have a quick
check in the web browser itself, so a space-efficient data structure must be used. A bloom
filter is a probabilistic data structure which only supports the following two operations:

I. add(x): Add an element x to the structure.

I. contains(x): Check if an element x is in the structure. If either returns “definitely not
in the set” or “could be in the set”.

It does not support the following two operations:

1. Delete an element from the structure.

II. Give a collection of elements that are in the structure.

The idea is that we can check our bloom filter if a URL is in the set. The bloom filter is
always correct in saying a URL definitely isn’t in the set, but may have false positives (it may
say a URL is in the set when it isn’t). Only in these rare cases does Chrome have to perform
an expensive database lookup to know for sure.

Suppose we have k bit arrays 7q, . . ., t; each of length m (all entries are O or 1), so the total
space required is only km bits or km /8 bytes (as a byte is 8 bits). Suppose the universe of
URL’s is the set U (think of this as all strings with less than 100 characters), and we have
k independent and uniform hash functions hy,...,hy : U — {0,1,...,m — 1}. That is,
for an element x and hash function #;, pretend h;(x) is a discrete Unif(0,m — 1) random
variable. Suppose we implement the add and contains function as follows:

Algorithm 1 Bloom Filter Operations

1: function iN1TIALIZE(K,m)

2
3
4
5
6
7

fori=1,...,k:do
t; = new bit array of m 0’s

: function ApD(x)

fori=1,...,k:do
tilhi(x)] =1

: function coNTAINS(X)

return 1 [(x)] == 1 Ata[ho(x)] == 1L A -~ Atg[hr(x)] ==

Refer to the notes from Section 9.4 of the textbook for more details on bloom filters.

(a) After inserting n distinct URLs to the bloom filter, suppose we had a new URL and
wanted to check whether it was contained in the bloom filter. What is the probability of a
false positive? That is, what is the probability the bloom filter returns True (incorrectly),
in terms of k, m and n?

(b) Implement the functions add and contains in the BloomFilter class of
bloom.py. What is the sample false positive rate? (This is printed out for you automat-
ically).

(©

(d)

Let’s compare this approach to using a typical Set data structure. Google wants to store
1 million URLSs, with each URL taking (on average) 25 bytes. How much space (in MB,
1 MB = 1 million bytes) is required if we store all the elements in a set? How much
space (in MB) is required if we store all the elements in a bloom filter with & = 10 hash
functions and m = 800, 000 buckets? Recall that 1 byte = 8 bits.

Let’s analyze the time improvement as well. Let’s say an average Chrome user attempts
to visit 51,000 URLs in a year, only 1,000 of which are actually malicious. Suppose
it takes half a second for Chrome to make a call to the database (the Set), and only
1 millisecond for Chrome to check containment in the bloom filter. Suppose the false
positive rate on the bloom filter is 4%; that is, if a website is not malicious, the bloom
filter will will incorrectly report it as malicious with probability 0.04. What is the time
(in seconds) taken if we only use the database, and what is the expected time taken (in
seconds) to check all 51,000 strings if we used the bloom filter + database combination
described earlier?

—9_

11. [Coding+Written]| YouTube wants to count the number of distinct views for a video, but
doesn’t want to store all the user ID’s. How can they get an accurate count of users without
doing so? The problem is modelled as follows: a video receives a stream of 8-byte integers
(user ID’s), x1, x2,...,xy, but there are only n distinct elements (1 < n < N), since some
people rewatch the video. We don’t know what N is, since people continuously view the
video, but assume we cannot store all N elements; we can’t even store the » distinct elements.

(a) First, let’s do this seemingly unrelated calculation. Let Uy, ..., U, be m iid samples
from the continuous Uni f (0, 1) distribution, and let X = min{Uy, ..., U,,}. Show that
E[X] = ﬁ (Hint: Compute Fx(x) similarly to 5(c), then compute fx(x)).

(b) If we were to solve this problem naively using a Set, what would the big-Oh space
complexity be (in terms of N and/or n)? If a video had N =2 billion views, with only
n = 900 million of them being distinct views, how much storage would we need for this
one video to keep track of the distinct users? Give your answer with the closest unit

(like 13.1 megabytes, 211.5 gigabytes, etc.).

(c) Suppose the universe of user ID’s is the set U (think of this as all 8-byte integers), and we
have a single uniform hash function 4 : U — [0, 1]. That is, for an element y, pretend
h(y) is a continuous Uni f (0, 1) random variable. That is, h(y;), h(y2), ..., h(yx) for
any k distinct elements are iid continuous Uni f (0, 1) random variables, but since the
hash function always gives the same output for some given input, 4(y;) and h(y;) are
the “same” Uni f (0, 1) random variable.

I claim we can (approximately) solve this distinct elements problem using a single
floating point variable (8 bytes), instead of the amount of memory the naive approach
from part (b) requires. Pseudocode is provided which explains the two key functions:

1. update(x): How to update your variable when you see a new stream element.
ii. estimate(): At any given time, how to estimate how many distinct elements
you’ve seen so far.
Argue why this randomized algorithm’s estimate is a “good” one, with solid grounding

in probability. Make sure to read how the “update” function is implemented as well,
and use your answer from part (a).

Algorithm 2 Distinct Elements Operations
function INITIALIZE()
val « oo
function UPDATE(X)
val « min {val, hash(x)}

function ESTIMATE()

return round (ﬁ -)
fori=1,...,N:do > Loop through all stream elements
update(x;) > Update our single float variable
return estimate() > An estimate for n, the number of distinct elements.

Refer to the notes from section 9.5 of the textbook for more details on the distinct
elements algorithm.

~10=-

(d) Implement the functions update and estimate in the DistElts class of
dist_elts.py. What is the estimated and the true number of distinct elements in
stream_small.txt? (This is printed out for you automatically).

(e) The estimator we came up with in (c) has high variance, so isn’t great sometimes. To
solve this problem, we will keep track of K DistElts classes, take the mean of our K
mins, and then apply the same trick as earlier to give an estimate. This will reduce the
variance of our estimate significantly. Implement the functions update and estimate
in the MultDistElts class of dist_elts.py. What is our improved estimate of the
number of distinct elements for K = 507 (This is also printed out for you automatically).

(f) How much space is saved from part (b) if YouTube wants to use K = 10,000 reps?
Assume for simplicity each DistElt class only takes 8-bytes (since it only stores one
float variable). Give your number as a multiplicative factor of savings (e.g., 10x, 2x,
etc).

12. (Extra Credit): If you worked with a partner that you were randomly paired with during a
social event or through the partner survey, attach a screenshot here to get extra credit (you
can get extra credit even if you use the same partner)! If it was a social event zoom call,
your screenshot must include the zoom meeting information to prove it was one of our social
zoom meetings.

—11 =

13. (Extra Credit) [Written]| The distinct elements algorithm is very theoretically interesting:
it can be used to actually solve a similar problem! Suppose we have a stream xy, . . ., xy, with
only n < N distinct elements. The distinct sum problem is: instead of returning n, return
the sum of the n distinct elements. When asked for pseudocode, copy the LaTeX pseudocode
from Q11, and modify it below.

(a) Suppose the stream elements are all positive integers. Explain how we can solve
this “positive integer distinct sum” problem. Then, explicitly give pseudocode for
the update and estimate functions. (Hint: You can “reduce” this problem to the
distinct elements problem. This means transforming the stream somehow and using
instance(s) of the distinct elements class. You can assume you have a distinct elements
implementation which handles any datatype (int, string, etc.).)

(b) Suppose the stream elements are all integers (could be positive or negative). Explain
how we can solve this “integer distinct sum” problem. Then, explicitly give pseudocode
for the update and estimate functions. (Hint: Reduction.)

