PROBABILITY
1§ MULTI-ARMED BANDITS

AGENDA

THE MULTT-ARMED BANDIT (MAB) PROBLEM
REEDY/EPSTLON-GREEDY

UPPeR CONFIDENCE BOUND (UCB) &
THOMPSON SAMPLING

MODERN HYPOTHESTS TESTING

MULTE-ARMED BANDIT (MAB) PROBLEM

e K Slot Machines {1,2,...,K} (aka "Bandits" with "Arms").

MULTZ-ARMED BANDIT (MAB) PROBLEM

e K Slot Machines {1,2,...,K} (aka "Bandits" with "Arms").

e At each time step t=1,2,..,T: Pull anarm a, €{1,2,... K} and observe random reward (each
arm is independent, and has some reward distribution which doesn't change over time).

MUHI -ARMED BANDIT (MAB) PROBLEM

K Slot Machines {1,2,... K} (aka "Bandits” with "Arms").

e At each time step t=1,2,..,T: Pull anarm a, €{1,2,... K} and observe random reward (each
arm is independent, and has some reward distribution which doesn't change over time).

® Goal: Maximize total (expected) reward after T time steps.

MUHI -ARMED BANDIT (MAB) PROBLEM

K Slot Machines {1,2,... K} (aka "Bandits” with "Arms").

e At each time step t=1,2,..,T: Pull anarm a, €{1,2,... K} and observe random reward (each
arm is independent, and has some reward distribution which doesn't change over time).

® Goal: Maximize total (expected) reward after T time steps.

e Problem: At each time step, decide which arm to pull based on past history of rewards.

MULTZ-ARMED BANDIT (MAB) PROBLEM

Below has the reward distribution of each of the K=3 arms.

What's your strategy to maximize your total (expected) reward?

Poi(A = 1.36) Bin(n =10,p = 0.4) Nu=-1,02=4)

MULTZ-ARMED BANDIT (MAB) PROBLEM

Below has the reward distribution of each of the K=3 arms.

What's your strategy to maximize your total (expected) reward?

Poi(A = 1.36) Bin(n =10,p = 0.4) Nu=-1,02=4)
S
Pull arm 2 every time since it has the highest expected reward!

MULTZ-ARMED BANDIT (MAB) PROBLEM

Well actually, we don't know the reward distributions (.

MULTZ-ARMED BANDIT (MAB) PROBLEM

Well actually, we don't know the reward distributions (.

Have to estimate all K expectations

MULTZ-ARMED BANDIT (MAB) PROBLEM

Well actually, we don't know the reward distributions (.

Have to estimate all K expectations, WHILE simultaneously maximizing reward!

MULTZ-ARMED BANDIT (MAB) PROBLEM

Well actually, we don't know the reward distributions (.

Have to estimate all K expectations, WHILE simultaneously maximizing reward!

This is a hard problem - we know nothing about the K reward distributions!

MULTZ-ARMED BANDIT (MAB) PROBLEM

Need to balance the tradeoff between:

Exploitation: Pulling arm(s) we know to be "good”.
Exploration: Pulling other arms in the hopes they are also "good"” or even better.

BERNOULLL BANDITS

We will handle the case of Bernoulli-bandits. That is, reward of arma €{1,2.... K} is Ber(P,) .

BERNOULLL BANDITS

We will handle the case of Bernoulli-bandits. That is, reward of arma €{1,2.... K} is Ber(P,) .

We don't know thesel

BERNOULLL BANDITS

We will handle the case of Bernoulli-bandits. That is, reward of arma €{1,2,... K} is Ber(P,) .

Observe: The expected reward of arm a is just D, —(expectation of Bernoulli).

We don't know thesel

REGRET

Regret is the difference between:
e The best possible expected reward (always pull the best arm)
e The actual reward you got

REGRET

Regret is the difference between:
e The best possible expected reward (always pull the best arm)
e The actual reward you got

Let p* = X D denote the highest expected reward from one of the K arms.

REGRET

Regret is the difference between:
e The best possible expected reward (always pull the best arm)
e The actual reward you got

Let p* = X D denote the highest expected reward from one of the K arms.

Regret(T) = Tp* — Reward(T)

At some "time" T (after T arm pulls)

REGRET

Regret is the difference between:
e The best possible expected reward (always pull the best arm)
e The actual reward you got

Let p* = X D denote the highest expected reward from one of the K arms.

Regret(T) = Tp* — Reward(T)

At some "time" T (after T arm pulls)

REGRET

Regret is the difference between:
e The best possible expected reward (always pull the best arm)
e The actual reward you got

Let p* = max . p; denote the highest expe reward from one of the K arms.

i€{1,2,...

Regret(T) = Tp* — Reward(T)

At some "time" T (after T arm pulls)

REGRET

Regret is the difference between:
e The best possible expected reward (always pull the best arm)
e The actual reward you got

Let p* = X D denote the highest expected reward from one of the K arms.

Regret(T) = Tp* — Reward(T)

Reward(T)

Avg-Regret(T) = p* — 7

REGRET

Regret is the difference between:
e The best possible expected reward (always pull the best arm)
e The actual reward you got

Let p* = X D denote the highest expected reward from one of the K arms.

Regret(T) = Tp* — Reward(T)

Reward(T)

Avg-Regret(T) = p* — 7

Want Avg-Regret(T) — 0 as T — 00 . Minimizing Regret = Maximizing Reward.

(BERNOULLT) BANDIT FRAMEWORK

How do we choose an arm at each time step (depending on past history), to maximize our total
reward?

Algorithm 1 (Bernoulli) Bandit Framework
1: Have K arms, where pulling arm i € {1,..., K} gives Ber(pi) reward = p;’s all unknown.

(BERNOULLT) BANDIT FRAMEWORK

How do we choose an arm at each time step (depending on past history), to maximize our total
reward?

Algorithm 1 (Bernoulli) Bandit Framework

1: Have K arms, where pulling arm i € {1,..., K} gives Ber(p;) reward » p;’s all unknown.
2: fort=1,...,Tdo &
3: Attime ¢, pullarma, € {1,...,K}. > How do we do decide which arm?

(BERNOULLT) BANDIT FRAMEWORK

How do we choose an arm at each time step (depending on past history), to maximize our total
reward?

Algorithm 1 (Bernoulli) Bandit Framework
1: Have K arms, where pulling arm i € {1,..., K} gives Ber(p;) reward » p;’s all unknown.
2: fort=1,...,Tdo
3: Attime ¢, pull arma, € {1,...,K}. > How do we do decide which arm?
4: Receive reward ry ~ Ber(pa,). > Reward is either 1 or 0.

(BERNOULLT) BANDIT FRAMEWORK

How do we choose an arm at each time step (depending on past history), to maximize our total
reward?

Algorithm 1 (Bernoulli) Bandit Framework
1: Have K arms, where pulling arm i € {1,..., K} gives Ber(p;) reward » p;’s all unknown.
2: fort=1,...,Tdo
3: Attime ¢, pull arma, € {1,...,K}. > How do we do decide which arm?
4: Receive reward ry ~ Ber(pa,). / > Reward is either 1 or 0.

/

This is the focus of the rest of this lecturel

MOTIVATION : CLINICAL TRIALS L

K=4 Arms (Treatments)

MOTIVATION : CLINICAL TRIALS "
K=4 Arms (Treatments)

For patient t, prescribe treatment a, € {1,2,3,4}.

MOTIVATION : CLINICAL TRIALS 8 -
P X
K=4 Arms (Treatments)

For patient t, prescribe treatment a, € {1,2,3,4}.

Observe reward r. € {0, 1}. (1 if healed, O if not)

MOTIVATION : CLINTCAL TRIALS - -
R

K=4 Arms (Treatments) V

For patient t, prescribe treatment a, € {1,2,3,4}.

Observe reward r. € {0, 1}. (1 if healed, O if not)

Maximize: Total number of patients healed.

MOTIVATION - RECOMMENDING MOVIES

K Movies

For visitor t, recommend movie a, € {1,2,... K}.

MOTIVATION - RECOMMENDING MOVIES

K Movies
For visitor t, recommend movie a, € {1,2,... K}.
Observe reward r, € {1,2,3,4,5}. (rating)

Maximize: Total/average rating of recommendations.

MOTIVATION - REAL LIFET]
(Fo0D)

K Cuisines/Dishes (a ton)

For meal t, eat dish a, € {1,2,... K}.

MOTIVATION : REAL LIFENT g5
(FooD) Vs
K Cuisines/Dishes (a ton)
For meal t, eat dish a, € {1,2,... K}.

Observe reward r, € {1,2,3,4,5}. (happiness rating)

Maximize: Total/average happiness :)

MOTIVATION: REAL LIFEN g
(Foon) A

K Cuisines/Dishes (a ton)

For meal t, eat dish a, € {1,2,... K}.

Observe reward r, € {1,2,3,4,5}. (happiness rating)

Maximize: Total/average happiness :)

7
A
£
S
.
3
\
~
. D %

The Question of the Day: Explore or Exploit????

MOTIVATION : REAL LiFED?
(ACTIVITIES)

K Activities

On day t, do activity a, € {12,...K}.
Observe reward r, € {1,2,3,4,5}. (happiness rating)

Maximize: Total/average happiness :)

The Question of the Day: Explore or Exploit????

ANY IDEAS ON WHAT STRATEGY WE CAN USE!!]

GREEDY (NAIVE) ALGORITHM

Algorithm 2 Greedy (Naive) Strategy for Bernoulli Bandits
1: Choose a number of times Zt'f! to pull each arm initially, with KM < T.

GREEDY (NAIVE) ALGORITHM

Algorithm 2 Greedy (Naive) Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with KM < T.
2: fori=1,2,...,Kdo

3: Pull arm / M times, observing iid rewards rii,...,rim ~ Ber(p;).
M ‘_
: . =1t
4: Estimate p; = ;

-— M

GREEDY (NAIVE) ALGORITHM

Algorithm 2 Greedy (Naive) Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with KM < T.

2: fori=1,2,...,Kdo
3: Pull arm i/ M timas, observing iid rewards ri1,...,ripn ~ Ber(p;).
4: Estimate p; = 21Ty

M

5: Determine best (empirical) arm a* = arg max;e(; 2. k1 Pi. > We could be wrong...

GREEDY (NAIVE) ALGORITHM

Algorithm 2 Greedy (Naive) Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with KM < T.

2 fori=1,2;....,K do
3: Pull arm / M times, observing iid rewards rii,...,rim ~ Ber(p;).
, XL
4: Estimate p; = v
5: Determine best (empirical) arm a* = arg max;e(1 2.k} Pi- > We could be wrong...
6: forr=KM+ 1, KM +2,...,T do:
7 Pull arm a, = a°. > Pull the same arm for the rest of time.
8 Receive reward r, ~ Ber(p,,).

GREEDY (NAIVE) ALGORITHM

Algorithm 2 Greedy (Naive) Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with KM < T.

2 fori=1,2;....,K do
3: Pull arm / M times, observing iid rewards rii,...,rim ~ Ber(p;).
, X
4: Estimate p; = i
5: Determine best (empirical) arm a* = arg max;e(1 2.k} Pi- > We could be wrong...
6: forr=KM+ 1, KM +2,...,T do:
7: Pull arm a, = a°. > Pull the same arm for the rest of time.
8 Receive reward r, ~ Ber(p,,).

If we make a mistake, we will regret our decision for the rest of time....

Can we not do all of our exploration at the beginning?

EPSTLON-GREEDY ALGORITHM

Explore with probability epsilon!

Algorithm 3 £-Greedy Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with KM < T.

2. fori=1,2;..:,K do
3: Pull arm i M times, observing iid rewards r;y,...,riy ~ Ber(p;).
M
: - Zl:l r’j
4: Estimate p; = :

M

EPSTLON-GREEDY ALGORITHM

Explore with probability epsilon!

Algorithm 3 £-Greedy Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with KM < T.

2fori=1,2;05:K 00
3: Pull arm i M times, observing iid rewards r;y,...,riy ~ Ber(p;).
.) ZJIW:I Fij
4: Estimate p; = i
5: fort=KM+ 1, KM +2,...,T do:
6: if Ber(g) == 1: then > With probabilitg”& explore.
7: Pull arm a, = Uni f(1, K) (discrete). > Choose a uniformly random arm.

EPSTLON-GREEDY ALGORITHM

Explore with probability epsilon!

Algorithm 3 £-Greedy Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with KM < T.
2. fori=1,2,...,Kdo
3 Pull arm i M times, observing iid rewards r;y,...,riy ~ Ber(p;).

. . ZJ;’:] Tij
4: Estimate p; = i
5. fort=KM+1,KM +2,...,T do:
6: if Ber(g) == 1: then > With probability £, explore.
7: Pull arm a, = Uni f(1, K) (discrete). > Choose a uniformly random arm.
8: else > With probability 1 — &, exploit.
9: Pull arm a, = arg max;e(1.2.... k) pi. > Choose arm with highest estimated reward.

EPSTLON-GREEDY ALGORITHM

Explore with probability epsilon!

Algorithm 3 £-Greedy Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with KM < T.
2. fori=1,2,...,Kdo
3 Pull arm i M times, observing iid rewards r;y,...,riy ~ Ber(p;).

. . Z}wzl Tij
4: Estimate p; = i
5. fort=KM+1,KM +2,...,T do:
6: if Ber(g) == 1: then > With probability £, explore.
7: Pull arm a, = Uni f(1, K) (discrete). > Choose a uniformly random arm.
8 else > With probability 1 — &, exploit.
9 Pull arm a; = arg max;e(1.2.... k) pi. > Choose arm with highest estimated reward.
10: Receive reward r; ~ Ber(pa,).

11: Update p,, (using newly observed reward r,).

EPSTLON-GREEDY ALGORITHM

Explore with probability epsilon!

Algorithm 3 £-Greedy Strategy for Bernoulli Bandits

1
2

3:

4.
5
6:
T
8
9

10:
11:

: Choose a number of times M to pull each arm initially, with KM < T.
: fori=1,2,...,Kdo

Pull arm i M times, observing iid rewards r;y,...,riy ~ Ber(p;).
. . ZJ;’:] Tij
Estimate p; = i
cfort=KM+ 1, KM +2,...,T do:
~ if Ber(g) == 1: then > With probability £, explore.
Pull arm a, = Uni f(1, K) (discrete). > Choose a uniformly random arm.
else > With probability 1 — &, exploit.
Pull arm a, = arg max;e(1.2.... k) pi. > Choose arm with highest estimated reward.

Receive reward r; ~ Ber(pa,).
Update p,, (using newly observed reward r,).

Can we explore more "naturally"?

UpPER CONFIDENCE BOUND (UCB) ALGORITHM

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the
highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

¢)) 4
‘ 1 '1) ?'5)-’ (s% ¢
L.-— 1 l £ J | l c
© LS e 08 2 =~ ——

UpPER CONFIDENCE BOUND (UCB) ALGORITHM

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the
highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo
o Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;/1. > Each estimate p; will initially either be 1 or 0.

UpPER CONFIDENCE BOUND (UCB) ALGORITHM

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the
highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo
o Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;/1. > Each estimate p; will initially either be 1 or 0.
4: forr=K+1,K+2,...,Tdo:

5: Pull arm a, = arg max;c(; 2. k) ([5,- + i\:n((.t))), where N, (/) is the number of times arm
- (1 =

i was pulled before time 1. —

UpPER CONFIDENCE BOUND (UCB) ALGORITHM

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the
highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo
o Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;/1. > Each estimate p; will initially either be 1 or 0.

4: fortr=K+1,K+2,....Tdo:

: 21n(1)
5: Pull 1, = i o
arm da,; arg maX;e(1.2....K) ([7 N;(i)

-

), where N, (i) is the number of times arm

i was pulled before time 1.

Point estimate/
Max-likelihood estimate

UpPER CONFIDENCE BOUND (UCB) ALGORITHM

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the
highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo
o Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;/1. > Each estimate p; will initially either be 1 or 0.

4: fortr=K+1,K+2,....Tdo:

: 21n(1)
5: Pull 1, = i o
arm af a‘rg max 6{12 K} (p N[(i)

), where N, (i) is the number of times arm

i was pulled before time 1.

Takes the upper part of of

Point estimate/ the confidence interval.

Max-likelihood estimate

UpPER CONFIDENCE BOUND (UCB) ALGORITHM

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the
highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo
o Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;/1. > Each estimate p; will initially either be 1 or 0.
4: forr=K+1,K+2,...,Tdo:

5: Pull arm a, = arg max;c(; 2.)

(. 21n(r)

,) where N, (i) is the number of times arm
N (i)

i was pulled before time 1.
6: Receive reward r; ~ Ber(p,,).

UpPER CONFIDENCE BOUND (UCB) ALGORITHM

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the
highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo
2 Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;/1. > Each estimate p; will initially either be 1 or 0.
4: fortr=K+1,K+2,....Tdo:

5: Pull arm a, = arg max;c(; 2.)

() 2Alfn((.r))) where N, (i) is the number of times arm
!
i was pulled before time 1.
6: Receive reward r; ~ Ber(p,,).

75 Update N;(a,) and p,, (using newly observed reward ry).

UpPER CONFIDENCE BOUND (UCB) ALGORITHM

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the
highest upper confidence bound (if the confidence interval is [a,b], we compare only the values of b).

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo
2 Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;/1. > Each estimate p; will initially either be 1 or 0.
4: fortr=K+1,K+2,....Tdo:

(. 21n(1)

_) where N, (i) is the number of times arm
N (i)

i was pulled before time 1.
6: Receive reward r; ~ Ber(p,,).
Update N;(a,) and p,, (using newly observed reward r;).

~

Exploration is "baked in": the frequently pulled arms will have narrow confidence intervals (and hence a lower upper
bound), and the less-frequently pulled arms will have wide intervals (and hence a higher upper bound).

UCB- CONFIDENCE

«Q _|
o
© _|
g o
g < |
o
N
o []

S ol

< T T T

1 2 3

Arm

[NTERVALS OVER TIME

Each

"]

U[B LONFIDENCE INTERVALS OVER TIME

ﬂ///

UCB- CONFIDENCE INTERVALS OVERTIME_____.......

Each Arm: t=10

e
=

. { « |
2 o
© =
s 8 -
3 S < |
3 o
| N
o L] =
- | o |
o T T T T ' = I
1 2 3 4 R !
Arm

UCB: CONFIDENCE INTERVALS OVER TIME

Confidence Intervals for Mean of Each Arm: t=10 Confidence Intervals for Mean of Each Arm: t=50

S e
- t 3 - i
© | © _|
g 2 3 o
S < | S < |
o o
N | N
o L] o
o | o |
< T T T T T = T T T T
1 2 3 4 5 1 2 3 4
Arm Arm
Confidence Intervals for Mean of Each Arm: t=100
o
[eo]
S 7 I §
- © _]
o
2 °
> <
o
N —
d %
o |
o T T T T T
1 2 3 4 5

UCB: CONFIDENCE INTERVALS OVER TIME

Confidence Intervals for Mean of Each Arm: t=10 Confidence Intervals for Mean of Each Arm: t=50

o o
: :
2 = 8 & {
S < | S < |
o o
N o
o L] o
o o
< T T T T T = T T T T
1 2 3 4 5 1 2 3 4
Arm Arm
Confidence Intervals for Mean of Each Arm: =100 Confidence Intervals for Mean of Each Arm: t=10000
o o _
S 3 L] S] ()
o S S §
s 8 . s 8 ¢
(]
> 34 > =
o % N
o o
o _| o]
S T T T T T S T T T T
1 2 3 4 5 1 2 3 4

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo

U [B [XA P L[: Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.

4: fort=K+1,K+2,...,Tdo:

[S¥]

5: Pull arm a, = arg max;e(1 2, k) ([5,- 2[\1,“((1))) where N, (i) is the number of times arm
!
i was pulled before time 1.
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a,) and p,, (using newly observed reward r;).
/ 4 v v
i S 2In(t
Arm | True p, # Times | Total p . | UCB (pi+ n()
(i) Pulled | Reward :
-— — Time | Arm Pulled | Reward
1 0.5 (1) (a,) (f)

2 0.2

)T 3 0.9

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: fori=1,2,...,Kdo
U [B [XA P L[2: Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.
4: forr=K+1,K+2,...,T do:
5: Pull arm a, = arg max;e(1 2, k) ([5,- 2[\1,“((1))) where N, (i) is the number of times arm
!
i was pulled before time 1.
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a,) and p,, (using newly observed reward r;).
_ i 2 2In(t
o Tep, Tmes oy uce s [0
Time | Arm Pulled | Reward
1 0.5 (1) (a) (r,)
2 0.2 \
3 0.9 \

We don't actually know these...

\

UCB [XAMPLE

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: fori=1.2...: K do

N

3
4:

Pull arm / once, observing r;

~ Ber(p;).

Estimate p; = r;.

forr=K+1.K+2,...,

T do:

> Each estimate p; will initially either be 1 or 0.

5: Pull arm a, = arg max;e(1 2, k) ([5,- 21\:“((;)) where N, (i) is the number of times arm
!
i was pulled before time 1.
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a,) and p,, (using newly observed reward r;).
, i 2 2In(t
m Ten, ATmes o B ucs (e i)
Time | Arm Pulled | Reward

1 0.5 (1) (a) (r,)
2 0.2 1 1 0
3 0.9

At time 1, we pull arm 1, and observe either a 1 (with probability 0.5) or a O (with probability 1-0.5).

We happen to observe a O.

UCB [XAMPLE

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: fori=1:2:.
Pull arm i/ once. observing r;

N

., K do

("

Estimate p; = r;.

4: fort=K+1,K+2,...,

g
=
=
8

I
-
=
&0
=
n

Prr

i was pulled before time 1.

6: Receive reward r,
Update N;(a,) and p,, (using newly observed reward r;).

o

T do:

~ Ber(p;).

o Ber(pa,)'

> Each estimate p; will initially either be 1 or 0.

21In(1r)
N: (i)

), where N, (i) is the number of times arm

Arm

True p,

Times

Total

A

2 ln(t

(i) Pulled | Reward Pi ucB(n+ N
1 0.5 1 0 0/1

2 0.2

3 0.9

Time | Arm Pulled ' Reward
(t) (a,) (r,)
1 1 0

UCB [XAMPLE

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: fori=1.2...: K do

N

3
4:

Pull arm / once, observing r;

~ Ber(p;).

Estimate p; = r;.

forr=K+1.K+2,...,

T do:

> Each estimate p; will initially either be 1 or 0.

5: Pull arm a, = arg max;e(1 2, k) ([5,- 2[\1,“((1))) where N, (i) is the number of times arm
i was pulled before time 1. :
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a,) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total A . 21n(t
_ ;| UCB (p; +)
Pull R pl
() ulled | Reward Time | Arm Pulled | Reward
1 05 1 0 0/1 (1) (a) (r)
2 0.2 2 2 0
3 0.9

At time 2, we pull arm 2, and observe either a 1 (with probability 0.2) or a O (with probability 1-0.2).

We happen to observe a O.

UCB EXAMPLE

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: fori=1.2,...,

W

4:

h

K do
Pull arm i/ once. observing r;

Estimate p; = r;.

forr=K+1.K+2,...,

i was pulled before time 1.

T do:

~ Ber(p;).

> Each estimate p; will initially either be 1 or 0.

21In(1r)

), where N, (i) is the number of times arm
N: (i)

6: Receive reward r, ~ Ber(p,,).
75 Update N;(a;) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p" L |2 ln(t
_ ;| UCB (p; +)
l
() Pulled | Reward Time | Arm Pulled | Reward
1 05 1 0 0/1 (1) (a) (r)
2 0.2 1 0 0/1 2 2 0
3 0.9

UCB [XAMPLE

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: fori=1.2...: K do

N

3
4:

Pull arm / once, observing r;

~ Ber(p;).

Estimate p; = r;.

forr=K+1.K+2,...,

T do:

> Each estimate p; will initially either be 1 or 0.

5: Pull arm a, = arg max;e(1 2, k) ([5,- 2[\1,“((1))) where N, (i) is the number of times arm
!
i was pulled before time 1.
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a,) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p‘ L |2 ln(t
_ ;| UCB (p; +)
l
() Pulled | Reward Time | Arm Pulled | Reward
1 05 1 0 0/1 (t) (a) (r)
2 0.2 1 0 0/1 3 3 1
3 0.9

At time 3, we pull arm 3, and observe either a 1 (with probability 0.9) or a O (with probability 1-0.9).

We happen to observe a 1.

UCB EXAMPLE

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: fori=1.2,...,

W

h

K do
Pull arm i/ once. observing r;

Estimate p; = r;.

cforr=K+1,K+2,...,

i was pulled before time 1.

T do:

~ Ber(p;).

> Each estimate p; will initially either be 1 or 0.

21In(1r)

), where N, (i) is the number of times arm
N: (i)

6: Receive reward r, ~ Ber(p,,).
75 Update N;(a;) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p" L |2 ln(t
_ ;| UCB (p; +)
l
() Pulled | Reward Time | Arm Pulled | Reward
1 05 1 0 0/1 (1) (a) (r)
2 0.2 1 0 0/1 3 3 1
3 0.9 1 1 11

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

fori=1,2,....Kdo

U [B [XA P L[2: Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.
4: forr=K+1.K+2..... T do
5: Pull arm a, = arg max;e(1 2, k) ([5,- 2[\1,“(()))l where N, (i) is the number of times arm
!
i was pulled before time 7.
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a,) and p,, (using newly observed reward r;).
, i 2 21 t
m Tuep, aTmes T8 B uos s) .
Time | Arm Pulled | Reward
1 05 1 0 0/1 (t) (a) (r)
2 0.2 1 0 0/1 4
3 0.9 1 1 1/1

At time 4, we must compute all our upper confidence bounds, and choose the best one.

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo

U [B [XA P L[: Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.
¢ q.) ™ ——

[S¥]

5 Pull arm a, = arg max;e(1 2, k) ([3,- 21\1{“(()))l where N, (i) is the number of times arm
!
i was pulled before time 7.
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a;) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p" L |2 ln(t
: ;| UCB (p; +)
l
(1) Pulled | Reward Time | Arm Pulled = Reward
1 05 1 0 0/1 1.665 (t) (a) (r)
2 0.2 1 0 0/1 4
3 0.9 1 1 1/1
2In(4)
7 ~ 1.665

At time 4, we must compute all our upper confidence bounds, and choose the best one.

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo

U [B [XA P L[: Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.
¢ q.) ™ ——

[S¥]

5 Pull arm a, = arg max;e(1 2, k) ([3,- 21\1{“(()))l where N, (i) is the number of times arm
!
i was pulled before time 7.
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a;) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p" . 21n(t
: ;| UCB (p; +)
l
(1) Pulled | Reward Time | Arm Pulled = Reward
1 05 1 0 0/1 1.665 (t) (a) (r)
2 0.2 1 0 0/1 1665 —_ 4
3 | 09 1 1 1/1 \
2In(4)
0+ 1 ~ 1.665

At time 4, we must compute all our upper confidence bounds, and choose the best one.

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo

U [B [XA P L[: Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.

[S¥]

5 Pull arm a, = arg max;e(1 2, k) ([5,- 21\1("(()))l where N, (i) is the number of times arm
i was pulled before time 7. :
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a;) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p" L |2 ln(t
_ ;| UCB (p; +)
l
(1) Pulled | Reward Time | Arm Pulled = Reward
1 05 1 0 0/1 1.665 (t) (a) (r)
2 0.2 1 0 0/1 1.665 4
3 0.9 1 1 1/1 2.665 e e
2In(4
nl() « 2665

At time 4, we must compute all our upper confidence bounds, and choose the best one.

UCB EXAMPLE

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: fori=1.2,...,

N

K do
Pull arm / once, observing r;

Estimate p; = r;.

~ Ber(p;).

> Each estimate p; will initially either be 1 or 0.

21n(r)
N (i)

i was pulled before time 7.

)l where N, (i) is the number of times arm

6: Receive reward r, ~ Ber(p,,).
75 Update N;(a;) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p" L |2 ln(t
_ ;| UCB (9 +)
l
(1) Pulled | Reward Time Arm Pulled Reward
1 0.5 1 0 0/1 1.665 (t) (a) (ry)
2 0.2 1 0 0/1 1.665 4 3
3 0.9 1 1 1/1 2.665

At time 4, arm 3 has the highest UCB so we pull it.

UCB EXAMPLE

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: fori=1.2,...,

N

K do
Pull arm / once, observing r;

Estimate p; = r;.

cforr=K+1,K+2,...,

T do:

~ Ber(p;).

> Each estimate p; will initially either be 1 or 0.

5: Pull arm a, = arg max;e(1 2, k) ([5,- 21\1("((;)) where N, (i) is the number of times arm
i was pulled before time 1. :
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a;) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p" L |2 ln(t
_ ;| UCB (p; +)
l
(1) Pulled | Reward Time | Arm Pulled = Reward
1 05 1 0 0/1 1.665 (t) (a) (r)
2 0.2 1 0 0/1 1.665 4 3 0
3 0.9 1 1 11 2.665

At time 4, arm 3 has the highest UCB so we pull it. We observe a reward of O.

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo
Pull arm / once, observing r; ~ Ber(p;).
Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.

4: fort=K+1,K+2,...,Tdo:

W

UCB [XAMPLE

h
g
=
s
I
-
=
0
28
L0
=

(x 21In(r)

), where N, (i) is the number of times arm
N: (i)

i was pulled before time 1.
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a,) and p,, (using newly observed reward r;).

Arm | True p, @ # Times Total p‘ . 21n(t
_ ;| UCB (hi+ [Frs)
[
(1) Pulled | Reward Time | Arm Pulled = Reward
1 0.5 1 0 0/1 (t) (a) (r,)
2 0.2 1 0 0/1 4 3 0
3 0.9 2 1 1/2

At time 4, arm 3 has the highest UCB so we pull it. We observe a reward of O.
Then we update our estimate for p,.

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo

U [B [XA P L[: Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.

[S¥]

5 Pull arm a, = arg max;e(1 2, k) ([5,- 2[\1,“(()))l where N, (i) is the number of times arm
!
i was pulled before time 7.
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a,) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p‘ L |2 ln(t
_ ;| UCB (p; +)
l
() Pulled | Reward Time | Arm Pulled | Reward
1 05 1 0 0/1 (t) (a) (r)
2 0.2 1 0 0/1 5
3 0.9 2 1 1/2

At time 5, we must compute all our upper confidence bounds, and choose the best one.

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: fori=1,2,....,Kdo

U [B [XA P L[2: Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.
: ; 4: fort=K+1.K+2..... T do:
) x 21n(t 5 s
3‘2 5: Pull arm a, = arg max;e(1 2. k) | Pi + 0 where N,(7) is the number of times arm
!
i was pulled before time 7.
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a;) and p,, (using newly observed reward r;).
, i A 2In(t
/?:n; R ies | Rewars | Pi UCB(a+)
Time | Arm Pulled | Reward
1 05 1 0 0/1 1.794 (t) (a) (r)
2 0.2 1 0 0/1 5
3 0.9 2 1 1/2
2In(5
0+ r;() < 1794

At time 5, we must compute all our upper confidence bounds, and choose the best one.

UCB EXAMPLE

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: fori=1.2,...,

N

K do
Pull arm / once, observing r;

Estimate p; = r;.

~ Ber(p;).

> Each estimate p; will initially either be 1 or 0.

21n(r)
N (i)

i was pulled before time 7.

)l where N, (i) is the number of times arm

6: Receive reward r, ~ Ber(p,,).
75 Update N;(a;) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p" L |2 ln(t
_ : UCB (5 +)
A
(1) Pulled | Reward Time | Arm Pulled | Reward
1 0.5 1 0 0/1 1.794 (t) (a) (ry)
2 0.2 1 0 0/1 1.794 —_ 5
3 09 2 1 112 \
2In(5
0+ r;() ~ 1794

At time 5, we must compute all our upper confidence bounds, and choose the best one.

UCB EXAMPLE

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: fori=1.2,...,

N

K do
Pull arm / once, observing r;

Estimate p; = r;.

~ Ber(p;).

> Each estimate p; will initially either be 1 or 0.

21n(r)
N (i)

i was pulled before time 7.

)l where N, (i) is the number of times arm

6: Receive reward r, ~ Ber(p,,).
75 Update N;(a;) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p" L |2 ln(t
_ ;| UCB (9 +)
l
(1) Pulled | Reward Time | Arm Pulled | Reward
1 0.5 1 0 0/1 1.794 (t) (a) (ry)
2 0.2 1 0 0/1 1.794 5
3 0.9 2 1 1/2 1769 —i—+—
1 2In(5)
> + > = 1.769

At time 5, we must compute all our upper confidence bounds, and choose the best one.

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo

U [B [XA P L[: Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.
(q.) = S

[S¥]

5 Pull arm a, = arg max;e(1 2, k) ([5,- 21\1("(()))l where N,(7) is the number of times arm
i was pulled before time 7. :
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a;) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p" L |2 ln(t
. ;| UCB (p; +)
l
(1) Pulled | Reward Time | Arm Pulled = Reward
1 05 1 0 0/1 1.794 (t) (a) (r)
2 0.2 1 0 0/1 1.794 5 1
3 0.9 2 1 1/2 1.769

At time 5, arms 1 and 2 have the highest UCB so we pull one of them (let's break ties by choosing the
smaller index arm). So we pull arm 1.

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo

U [B [XA P L[: Pull arm i once, observing r; ~ Ber(p;).
3: Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.

4: fort=K+1,K+2,...,Tdo:

[S¥]

(5 21n(1)

), where N, (i) is the number of times arm
N: (i)

i was pulled before time 1.
6: Receive reward r, ~ Ber(p,,).

75 Update N;(a;) and p,, (using newly observed reward r;).
Arm | True p, @ # Times Total p" L |2 ln(t
. ;| UCB(pi+)
l
(1) Pulled | Reward Time | Arm Pulled Reward
1 0.5 1 0 0/1 1.794 (t) (a) (r)
2 0.2 1 0 0/1 1.794 o 1 0
3 0.9 2 1 1/2 1.769

At time 5, arms 1 and 2 have the highest UCB so we pull one of them (let's break ties by choosing the
smaller index arm). So we pull arm 1.
We observe a reward of O.

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo
Pull arm / once, observing r; ~ Ber(p;).
Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.

4: fort=K+1,K+2,...,Tdo:

W

UCB [XAMPLE

h
g
=
s
I
-
=
0
28
L0
=

(x 21In(r)

), where N, (i) is the number of times arm
N: (i)

i was pulled before time 1.
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a,) and p,, (using newly observed reward r;).

Arm | True p, @ # Times Total p‘ . 21n(t
_ ;| UCB (hi+ [Frs)
[
(1) Pulled | Reward Time | Arm Pulled = Reward
1 0.5 2 0 0/2 (t) (a) (r,)
2 0.2 1 0 0/1 5 1 0
3 0.9 2 1 1/2

At time 5, arms 1 and 2 have the highest UCB so we pull one of them (let's break ties by choosing the
smaller index arm). So we pull arm 1.
We observe a reward of 0. Then we update our estimate for p,.

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
I: fori=1,2,...,Kdo
Pull arm / once, observing r; ~ Ber(p;).
Estimate p; = r;. > Each estimate p; will initially either be 1 or 0.

4: fort=K+1,K+2,...,Tdo:

W

UCB [XAMPLE

h
g
=
s
I
-
=
0
28
L0
=

(x 21In(r)

), where N, (i) is the number of times arm
N: (i)

i was pulled before time 1.
6: Receive reward r, ~ Ber(p,,).
75 Update N;(a,) and p,, (using newly observed reward r;).

Arm | True p, @ # Times Total p‘ . 21n(t
| ; UCB(a+ o)
[
(1) Pulled | Reward Time | Arm Pulled = Reward
1 0.5 2 0 0/2 (t) (a) (r,)
2 0.2 1 0 0/1 6
3 0.9 2 1 1/2

And so onlll Notice how we started exploring since the confidence bound grows with t for even the
unexplored arms!

THOMFSON SAMPLING ALGORTTH 0@

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

THOMPSON SAMPLING ALGORITHM Oﬁ

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
I: Foreacharmi € {1,..., K}, initialize a; = Bi = 1. > Set Beta(a;, B;) prior for each p;.

THOMPSON SAMPLING ALGORITHM O

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = B; = 1. > Set Beta(«;, ;) prior for each p;.
2: ot =1,2 0L 00
3: For each arm /, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].

—

THOMPSON SAMPLING ALGORITHM O

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = B; = 1. > Set Beta(«;, ;) prior for each p;.
2: fort=1,2,...;T deo:

3: For each arm /, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].
4: Pull arm a; = arg max;e{12,.. K} Sit- > This “bakes in” exploration!

THOMPSON SAMPLING ALGORITHM O

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = B; = 1. > Set Beta(«;, ;) prior for each p;.
2: fort=1,2,...;T deo:

3 For each arm /, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].
4: Pull arm a; = arg max;e{12,.. K} Sit- > This “bakes in” exploration!
5 Receive reward r, ~ Ber(p,,).

THOMPSON SAMPLING ALGORITHM 0

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = B; = 1. > Set Beta(«;, ;) prior for each p;.
2: fort=1,2,...,T do:

3: For each arm i, get sample s;;, ~ Beta(a;, ;). > Each is a float in [0, 1].
4: Pull arm a; = arg max;e{12,.. K} Sit- > This “bakes in” exploration!
5 Receive reward r, ~ Ber(p,,).

6 if r; == 1 then a,, « a,, + 1. > Increment number of “successes”.
7 else if r; == 0 then S,, < B4, + 1. > Increment number of “failures”.

THOMPSON SAMPLING ALGORITHM 0

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = B; = 1. > Set Beta(«;, ;) prior for each p;.
2: fort=1,2,...,T do:

3: For each arm i, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].
4: Pull arm a; = arg max;e{12,.. K} Sit- > This “bakes in” exploration!
5 Receive reward r, ~ Ber(p,,).

6 if r; == 1 then a,, < a,, + 1. > Increment number of “successes”.
7 else if r; == 0 then S,, < B4, + 1. > Increment number of “failures”.

The exploration comes in since we sample from each Beta distribution, rather than just
choosing the one with largest expectation or mode (greedy).

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1. > Set Beta(a;, B;) prior for each p;.
IHOM PSON 2 for1=1,2,....T do:

3: For each arm i, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].

4: Pull arm a; = arg max;e{12,.. K} Sis- > This “bakes in” exploration!
[XA M P L [5: Receive reward r; ~ Ber(p,,).

6: if r; == 1 then a,, « a,, + 1. > Increment number of “successes’.

7: else if r; == 0 then §,, « B4, + 1. > Increment number of “failures”.

5

Ar.m(True p, ai ﬁi Si £

)

Time | Arm Pulled ' Reward

1 0.5 (t) (a,) (r,)

2 0.2

3 0.9

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1:|[Foreacharm i € {1, ..., K}, initialize a; = §; = 1. > Set Beta(a;, B;) prior for each p;.
IHOMPSON 2. 1tort=1,2,. Tdo

3: For cach arm i, get sample s;, ~ Beta(a;, ;). > Each is a float in [0, 1].

4: Pull arm a; = arg max;e{12,.. K} Sis- > This “bakes in” exploration!
[XA M P L [5: Receive reward r, ~ Ber(p,,,).

6: if r; == 1 then a,, « a,, + 1. > Increment number of “successes’.

7: else if r; == 0 then §,, « B4, + 1. > Increment number of “failures”.

5

Ar.m(True p, ai ﬁi Si £

i) ’ Time | Arm Pulled | Reward
T os O 1 () (&) | (n)
2 0.2 1 1 1

3 0.9 1 1

THOMPSON

EXAMPLE
5

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

N

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1.
2 fort=1,2,...;T de:

3:

For each arm i, get sample s;, ~ Beta(a;, B;).

Pull arm a; = arg max;e{12,.. K} Si.r.
Receive reward r; ~ Ber(p,,).
if r; == 1 then a,, «— a,, + 1.
else if r; == O then B, « B, + 1.

> Set Beta(a;, B;) prior for each p;.

> Each is a float in [0, 1].
> This “bakes in” exploration!

> Increment number of “successes’.
> Increment number of “failures”.

Arm (| True p, ; . !
i) ' al ﬁl Sl,t _
Time | Arm Pulled | Reward
1 0.5 1 1 0.43 (t) (a) (r,)
2 | 02 1 1 \ !
3 0.9 1 1

Sample from Beta(1,1) density —

THOMPSON

EXAMPLE
5

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

N

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1.
2 fort=1,2,...;T de:

3:

For each arm i, get sample s;, ~ Beta(a;, B;).

Pull arm a; = arg max;e{12,.. K} Si.r.
Receive reward r; ~ Ber(p,,).
if r; == 1 then a,, «— a,, + 1.
else if r; == O then B, « B, + 1.

> Set Beta(a;, B;) prior for each p;.

> Each is a float in [0, 1].
> This “bakes in” exploration!

> Increment number of “successes’.
> Increment number of “failures”.

Arm (| True p, ; . !
i) ' al ﬁl Sl,t _
Time @ Arm Pulled ' Reward
1 0.5 1 1 0.43 (t) (a) (r,)
2 0.2 1 1 078 —— 1
3 0.9 1 1

Sample from Beta(1,1) density —

THOMPSON
LAMPLE

5

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

N

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1.
2 fort=1,2,...;T de:

3:

For each arm i, get sample s;, ~ Beta(a;, B;).

Pull arm a; = arg max;e{12,.. K} Si.r.
Receive reward r; ~ Ber(p,,).
if r; == 1 then a,, « a,, + 1.
else if r; == O then B, « B, + 1.

> Set Beta(a;, B;) prior for each p;.

> Each is a float in [0, 1].
> This “bakes in” exploration!

> Increment number of “successes’.
> Increment number of “failures”.

Arm (| True p, ; . !
i) ' al ﬁl Sl,t _
Time | Arm Pulled ' Reward

1 0.5 1 1 0.43 (t) (a) (r,)
2 0.2 1 1 0.75 1
3 0.9 1 1 0.11 — |

- 08|

- i

Sample from Beta(1,1) density —

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

THOMPSON = rest2 7

EXAMPLE
5

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1. > Set Beta(a;, B;) prior for each p;.
3: For each arm i, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].
4: Pull arm a; = arg max;e{1.2._ K} Sit- > This “bakes in” exploration!
5: Receive reward r; ~ Ber(p,,).

6: if r; == 1 then a,, « a,, + 1. > Increment number of “successes’.
7: else if r; == 0 then §,, « B4, + 1. > Increment number of “failures”.

Arm (| True p, ; . !
i) ' al ﬁl Sl,t _
Time @ Arm Pulled ' Reward
1 0.5 1 1 0.43 (t) (a) (r,)
2 0.2 1 1 0.75 1 2
3 0.9 1 1 0.11

Choose arm with highest samplel

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1. > Set Beta(a;, B;) prior for each p;.
IHOM PSON 2 for1=1,2,....T do:

3: For each arm i, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].

4: Pull arm a; = arg max;e{1.2, . K} Sit- > This “bakes in” exploration!
[XA M P L [5: Receive reward r; ~ Ber(p,,).

6: if r, == 1 then a,, <« a,, + 1. > Increment number of “successes’.

7: else if r; == 0 then §,, « B4, + 1. > Increment number of “failures”.

5

Arm (| True p, ; . !
i) ' al ﬁl Sl,t _
Time @ Arm Pulled ' Reward
1 0.5 1 1 0.43 (t) (a) (r,)
2 0.2 1 1 0.75 1 2 _0
3 0.9 1 1 0.11

Observe reward 1 with probability 0.2
and O with probability 0.8.

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1. > Set Beta(a;, B;) prior for each p;.
IHOM PSON % for1=1,2,....T do:

3: For each arm i, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].

4: Pull arm a; = arg max;e{12,.. K} Sis- > This “bakes in” exploration!
[XA M P L [5: Receive reward r, ~ Ber(p,).

6: if r; == 1 then a,, « a,, + 1. > Increment number of “successes’.

7: else if r; == 0 then §,, « B4, + 1. > Increment number of “failures”.

5

Arm (| True p, ; . !
i) A Bi Sl,t
Time | Arm Pulled ' Reward
1 0.5 1 1 (t) (a) (r,)
2 0.2 1 2 1 2 0
3 0.9 1 1

Add a count of 1 to the failures :(.

THOMPSON

EXAMPLE
5

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

N

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1.
2 fort=1,2,...;T de:

3:

For each arm i, get sample s;, ~ Beta(a;, B;).

Pull arm a; = arg max;e{12,.. K} Si.r.
Receive reward r; ~ Ber(p,,).
if r; == 1 then a,, «— a,, + 1.
else if r; == O then B, « B, + 1.

> Set Beta(a;, B;) prior for each p;.

> Each is a float in [0, 1].
> This “bakes in” exploration!

> Increment number of “successes’.
> Increment number of “failures”.

Arm (| True p, ; . !
i) | al ﬁl Sl,t _
Time | Arm Pulled | Reward
1 05 1 1 052 _ (1) (a) ()
2 0.2 1 2 \ ’
3 | 09 1 1

Sample from Beta(1,1) density —

THOMPSON = rest2e 7o

EXAMPLE
5

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1.

3: For each arm i, get sample s;, ~ Beta(a;, B;).
4: Pull arm a; = arg max;e{12,.. K} Sis-

5: Receive reward r; ~ Ber(p,,).

6: if r; == 1 then a,, «— a,, + 1.

7: else if r; == 0 then §,, « B4, + 1.

> Set Beta(a;, B;) prior for each p;.

> Each is a float in [0, 1].
> This “bakes in” exploration!

> Increment number of “successes’.
> Increment number of “failures”.

At Tven oy By Sit
1 0.5 1 1 0.52
2 0.2 1 2 005—
3 0.9 1 1

Sample from Beta(1,2) density —

Time | Arm Pulled ' Reward

(1) (a) (r)

THOMPSON
LAMPLE

5

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

N

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1.
2 fort=1,2,...;T de:

3:

For each arm i, get sample s;, ~ Beta(a;, B;).

Pull arm a; = arg max;e{12,.. K} Si.r.
Receive reward r; ~ Ber(p,,).
if r; == 1 then a,, « a,, + 1.
else if r; == O then B, « B, + 1.

> Set Beta(a;, B;) prior for each p;.

> Each is a float in [0, 1].
> This “bakes in” exploration!

> Increment number of “successes’.
> Increment number of “failures”.

Arm (| True p, ; . !
i) | al ﬁl Sl,t _
Time @ Arm Pulled ' Reward
1 0.5 1 1 0.52 (t) (a) (r,)
2 0.2 1 2 0.05 2
3 0.9 1 1 0.67 — |

06}

Sample from Beta(1,1) density —

04}

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

THOMPSON = rest2 7

EXAMPLE
5

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1. > Set Beta(a;, B;) prior for each p;.
3: For each arm i, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].
4: Pull arm a; = arg max;e{1.2._ K} Sit- > This “bakes in” exploration!
5: Receive reward r; ~ Ber(p,,).

6: if r; == 1 then a,, « a,, + 1. > Increment number of “successes’.
7: else if r; == 0 then §,, « B4, + 1. > Increment number of “failures”.

Arm (| True p, ; . !
i) | al ﬁl Sl,t _
Time @ Arm Pulled ' Reward
1 0.5 1 1 0.52 (t) (a) (r,)
2 0.2 1 2 0.05 2 3
3 0.9 1 1 0.67

Choose arm with highest samplel

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1. > Set Beta(a;, B;) prior for each p;.
IHOM PSON 2 for1=1,2,....T do:

3: For each arm i, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].

4: Pull arm a; = arg max;e{1.2, . K} Sit- > This “bakes in” exploration!
[XA M P L [5: Receive reward r; ~ Ber(p,,).

6: if r, == 1 then a,, <« a,, + 1. > Increment number of “successes’.

7: else if r; == 0 then §,, « B4, + 1. > Increment number of “failures”.

5

Arm (| True p, ; . !
i) | al ﬁl Sl,t _
Time @ Arm Pulled ' Reward
1 0.5 1 1 0.52 (t) (a) (r,)
2 0.2 1 2 0.05 2 3 1
3 0.9 1 1 0.67

Observe reward 1 with probability 0.9
and O with probability 0.1.

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1. > Set Beta(a;, B;) prior for each p;.
IHOM PSON 2 fort=1,2,...,T do:

3: For each arm i, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].

4: Pull arm a; = arg max;e{12,.. K} Sis- > This “bakes in” exploration!
[XA M P L [5: Receive reward r, ~ Ber(p,).

6: if r; == 1 then a,, «— a,, + 1. > Increment number of “‘successes”.

7: else if r; == 0 then §,, « B4, + 1. > Increment number of “failures”.

5

Arm (| True p, ; . !
i) A Bi Sl,t
Time | Arm Pulled ' Reward
1 0.5 1 1 (t) (a) (r,)
2 0.2 1 2 2 3 1
3 0.9 2 1

Add a count of 1 to the successes :).

THOMPSON

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1.
2 fort=1,2,...;T de:

> Set Beta(a;, B;) prior for each p;.

3: For each arm i, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].
4: Pull arm a; = arg max;e{12,.. K} Sis- > This “bakes in” exploration!
[XA M P L[5: Receive reward r; ~ Ber(p,,).
6: if r; == 1 then a,, «— a,, + 1. > Increment number of “‘successes”.
O 7: else if r; == 0 then §,, « B4, + 1. > Increment number of “failures”.
Arm (| True p, ; . !
i) | al, ﬁ L S Lt _
Time | Arm Pulled | Reward
1 0.5 1 1 0.44 (t) (&) (r,)
2 0.2 1 2 0.27 3
3 0.9 2 1 @ Beta(2,1)

Sample from each arm's Beta distribution —

Beta(1,1)

0.4}

L

.| Beta(1,2)

0.2 0.4

06 08 1.0

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1. > Set Beta(a;, B;) prior for each p;.
IHOMPSON % for1=1,2,....T do:

3: _Foreach arm 7, get sample s;, ~ Beta(a;, ;). > Each is a float in [0, 1].

4: Pull arm a; = arg max;e{12,.. K} Sis- > This “bakes in” exploration!
[XA M P L[5: Receive reward r;, ~ Ber(p,,).

6: if r; == 1 then a,, « a,, + 1. > Increment number of “successes’.

7: else if r; == 0 then §,, « B4, + 1. > Increment number of “failures”.

5

Arm (| True p, ; . !
i) ' al ﬁl Sl,t _
Time @ Arm Pulled ' Reward
1 0.5 1 1 0.44 (t) (a) (r,)
2 0.2 1 2 0.27 3 3 (0/
3 0.9 2 1 0.86

Observe reward 1 with probability 0.9
and O with probability 0.1.

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1. > Set Beta(a;, B;) prior for each p;.
IHOM PSON % for1=1,2,....T do:

3: For each arm i, get sample s;, ~ Beta(a;, B;). > Each is a float in [0, 1].

4: Pull arm a; = arg max;e{12,.. K} Sis- > This “bakes in” exploration!
[XA M P L [5: Receive reward r, ~ Ber(p,).

6: if r; == 1 then a,, « a,, + 1. > Increment number of “successes’.

7: else if r; == 0 then §,, « B4, + 1. > Increment number of “failures”.

5

Arm (| True p, ; . !
i) ' al ﬁl Sl,t _
Time @ Arm Pulled ' Reward
1 0.5 1 1 0.44 (t) (a) (r,)
2 0.2 1 2 0.27 3 3 0
3 0.9 2 2 0.86

Add a count of 1 to the failures :(.

THOMPSON

EXAMPLE
5

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

N

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1.
2 fort=1,2,...;T de:

3:

For each arm i, get sample s;, ~ Beta(a;, B;).

Pull arm a; = arg max;e{12,.. K} Si.r.
Receive reward r; ~ Ber(p,,).
if r; == 1 then a,, «— a,, + 1.
else if r; == O then B, « B, + 1.

> Set Beta(a;, B;) prior for each p;.

> Each is a float in [0, 1].

> This “bakes in” exploration!

> Increment number of “successes’.
> Increment number of “failures”.

Arm (| True p, ;)]
i) a; ﬁl Sl,t
1 0.5 1 1 0.63
2 0.2 1 2 0.15
3 0.9 2 2 044
Sample from each arm'’s Beta distribution — | Beta(1,1)

0.4}

L

Time | Arm Pulled ' Reward
(t) (a,) (r,)
4

.| Beta(1,2)

» / Beta(2,2)

0.2 0.4

06 (02 04 06 08 10

THOMPSON

EXAMPLE
5

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

N

1: Foreacharmi € {1,..., K}, initialize a; = §; = 1.
2 fort=1,2,...;T de:

3:

For each arm i, get sample s;, ~ Beta(a;, B;).

Pull arm a; = arg max;e{12,.. K} Si.r.
Receive reward r; ~ Ber(p,,).
if r; == 1 then a,, «— a,, + 1.
else if r; == O then B, « B, + 1.

> Set Beta(a;, B;) prior for each p;.

> Each is a float in [0, 1].

> This “bakes in” exploration!

> Increment number of “successes’.

> Increment number of “failures”.

A Tven By Sit
1 0.5 1 1 0.63
2 0.2 1 2 0.15
3 0.9 2 2 0.44

Time | Arm Pulled ' Reward
(t) (a,) (r,)
4

And so onlll Notice how we explore because there's some chance the "best” arm will have a lower sample
occasionally and let other arms win!

Avg Cumulative Regret

UCB VS THOMPSON SAMPLING: AVG REGRET OVER TIME

(ucb) Avg Cumulative Regret vs Time

0.8 1

0.6

0.4 1

0.2 1

0.0 -

b

T T T T
0 2000 4000 6000 8000 10000
Time

Avg Cumulative Regret

(thompson) Avg Cumulative Regret vs Time

0.8

0.6

0.4

0.2 1

0.0 A

P

0

T
2000

T
4000

Time

T
6000

8000

T
10000

Proportion of Times Pulled

UCE VS THOMPSON SAMPLING: PROPORTION OF TIMES PULLED

(ucb) Proportion of Times Pulled vs Time

1.0 1

o
(o]
1

o
[=)]
1

o
S
Il

o
N
1

0.0 +

arm 0, p=0.36
arm 1, p=0.77
arm 2, p=0.89
arm 3, p=0.74
arm 4, p=0.11

N

0 2000 4000 6000

Time

8000 @

Proportion of Times Pulled

(thompson) Proportion of Times Pulled vs Time

1.0 1

@

0.8 -

oy —— arm 0, p=0.36
— arm 1, p=0.77
—— 3rm 2, p=0.89
— arm 3, p=0.74

0.4 1 —— arm 4, p=0.11

0.2

-l N

0 2000 4000 6000 8000 10000

Time

TRADITIONAL A/B (HYPOTHESIS) TESTING

A large company wants to experiment releasing a new feature/modification.

Assign
e 99% of population to control group (current feature)
e 1% to experimental group (new feature).

TRADITIONAL A/B (HYPOTHESIS) TESTING

A large company wants to experiment releasing a new feature/modification.

Assign
e 99% of population to control group (current feature)
e 1% to experimental group (new feature).

This has the following consequences:

e If the new feature is "bad", very small percentage of the population sees it, so company
protects itself.

TRADITIONAL A/B (HYPOTHESIS) TESTING

A large company wants to experiment releasing a new feature/modification.

Assign
e 99% of population to control group (current feature)
e 1% to experimental group (new feature).

This has the following consequences:
e If the new feature is "bad", very small percentage of the population sees it, so company

protects itself.
e If the new feature is "good", very small percentage of the population sees it, so company

may lose revenue.

TRADITIONAL A/B (HYPOTHESIS) TESTING

A large company wants to experiment releasing a new feature/modification.

Assign
e 99% of population to control group (current feature)
e 1% to experimental group (new feature).

This has the following consequences:
e If the new feature is "bad", very small percentage of the population sees it, so company
protects itself.
e If the new feature is "good", very small percentage of the population sees it, so company
may lose revenue.

Can we do better? Can we adaptively assign subjects to each group based on how each is
performing rather than deciding at the beginning?

A large compan

Assign
e 99% of po
o 1% to expg

This has the fo
e Ifthene
protects i

e Ifthene
may lose r

Can we do bette
performing rat

MODERN A/B (HYPOTHESIS) TESTING

A large company wants to experiment releasing a new feature/modification.

Assign
e Arm 1: Current Feature
e Arm 2: New feature

MODERN A/B (HYPOTHESIS) TESTING

A large company wants to experiment releasing a new feature/modification.

Assign
e Arm 1: Current Feature
e Arm 2: New feature

When feature is requested by some user, use Multi-Armed Bandit algorithm to decide which
feature to show!

MODERN A/B (HYPOTHESIS) TESTING

A large company wants to experiment releasing a new feature/modification.

Assign
e Arm 1: Current Feature
e Arm 2: New feature

When feature is requested by some user, use Multi-Armed Bandit algorithm to decide which
feature to show!

(Can have any number of features/arms)

MODERN A/B (HYPOTHESIS) TESTING

When to use Traditional A/B Testing:
e Need to collect data for critical business decisions.
e Need statistical confidence in all your results and impact. Want to learn even about
treatments that didn't perform well.
e The reward is not immediate (e.g., if drug testing, don't have time to wait for each
patient to finish before experimenting with next patient).
e Optimize/measure multiple metrics, not just one.

MODERN A/B (HYPOTHESIS) TESTING

When to use Traditional A/B Testing:
e Need to collect data for critical business decisions.
e Need statistical confidence in all your results and impact. Want to learn even about
treatments that didn't perform well.
e The reward is not immediate (e.g., if drug testing, don't have time to wait for each
patient to finish before experimenting with next patient).
e Optimize/measure multiple metrics, not just one.

When to use Multi-Armed Bandits:
e No need for interpreting results, just maximize reward (typically revenue/engagement)
e The opportunity cost is high (if advertising a car, losing a conversion is >=$20,000)
e Can add/remove arms in the middle of an experiment! Cannot do with A/B tests.

MODERN A/B (HYPOTHESIS) TESTING

When to use Traditional A/B Testing:
e Need to collect data for critical business decisions.
e Need statistical confidence in all your results and impact. Want to learn even about
treatments that didn't perform well.
e The reward is not immediate (e.g., if drug testing, don't have time to wait for each
patient to finish before experimenting with next patient).
e Optimize/measure multiple metrics, not just one.

When to use Multi-Armed Bandits:
e No need for interpreting results, just maximize reward (typically revenue/engagement)
e The opportunity cost is high (if advertising a car, losing a conversion is >=$20,000)
e Can add/remove arms in the middle of an experiment! Cannot do with A/B tests.

The study of Multi-Armed Bandits can be categorized as:
e Statistics
e Optimization
e "Reinforcement Learning” (subfield of Machine Learning)

