Probability
 9.8 Mulit-Armed bandits

ALEKS Jovcic SLides by Alex Tsun

Agenda

- The Multi-ARmed Bandit (MAB) Problem
- Greedy/Epsilon-Greedy
- Upper Confidence Bound (UCB) e
- Thompson Sampling
- Modern Hypothesis Testing

Mulit-Armed Bandit (Mab) Problem

- K Slot Machines $\{1,2, \ldots, K\}$ (aka "Bandits" with "Arms").

Mulit-Armed Bandit (MAB) Problem

- K Slot Machines $\{1,2, \ldots, K\}$ (aka "Bandits" with "Arms").
- At each time step $t=1,2, \ldots, T$: Pull an arm $a_{t} \in\{1,2, \ldots, K\}$ and observe random reward (each arm is independent, and has some reward distribution which doesn't change over time).

Mulit-Armed Bandit (MAB) Problem

- K Slot Machines $\{1,2, \ldots, K\}$ (aka "Bandits" with "Arms").
- At each time step $t=1,2, \ldots, T$: Pull an arm $a_{\dagger} \in\{1,2, \ldots, K\}$ and observe random reward (each arm is independent, and has some reward distribution which doesn't change over time).
- Goal: Maximize total (expected) reward after T time steps.

Mulit-Armed Bandit (MAB) Problem

- K Slot Machines $\{1,2, \ldots, K\}$ (aka "Bandits" with "Arms").
- At each time step $t=1,2, \ldots, T$: Pull an arm $a_{\dagger} \in\{1,2, \ldots, K\}$ and observe random reward (each arm is independent, and has some reward distribution which doesn't change over time).
- Goal: Maximize total (expected) reward after T time steps.

- Problem: At each time step, decide which arm to pull based on past history of rewards.

Mulit-Armed Bandit (MAB) Problem

Below has the reward distribution of each of the $K=3$ arms.
What's your strategy to maximize your total (expected) reward?

$\operatorname{Poi}(\lambda=1.36)$

$$
\operatorname{Bin}(n=10, p=0.4)
$$

$\mathcal{N}\left(\mu=-1, \sigma^{2}=4\right)$

Mulit-Armed Bandit (MAB) Problem

Below has the reward distribution of each of the $K=3$ arms.
What's your strategy to maximize your total (expected) reward?

$\operatorname{Poi}(\lambda=1.36) \quad \operatorname{Bin}(n=10, p=0.4)$

$\mathcal{N}\left(\mu=-1, \sigma^{2}=4\right)$

Pull arm 2 every time since it has the highest expected reward!

Mulit-Armed Bandit (MAB) Problem

Well actually, we don't know the reward distributions :(.

Mulit-Armed Bandit (MAB) Problem

Well actually, we don't know the reward distributions :(.
Have to estimate all K expectations

Mulit-Armed Bandit (MAB) Problem

Well actually, we don't know the reward distributions :(.
Have to estimate all K expectations, WHILE simultaneously maximizing reward!

Mulit-Armed Bandit (MAB) Problem

Well actually, we don't know the reward distributions :(.
Have to estimate all K expectations, WHILE simultaneously maximizing reward!

This is a hard problem - we know nothing about the K reward distributions!

Mulit-Armed Bandit (MAB) Problem

Need to balance the tradeoff between:
Exploitation: Pulling arm(s) we know to be "good". Exploration: Pulling other arms in the hopes they are also "good" or even better.

Bernoulli Bandits

We will handle the case of Bernoulli-bandits. That is, reward of arm a $\in\{1,2, \ldots, K\}$ is $\operatorname{Ber}\left(\boldsymbol{p}_{\boldsymbol{a}}\right)$.

$\operatorname{Ber}\left(p_{1}\right)$

$\operatorname{Ber}\left(p_{2}\right)$

$\operatorname{Ber}\left(p_{3}\right)$

Bernoulli Bandits

We will handle the case of Bernoulli-bandits. That is, reward of arm a $\in\{1,2, \ldots, K\}$ is $\operatorname{Ber}\left(\boldsymbol{p}_{\boldsymbol{a}}\right)$.

Bernoulli Bandits

We will handle the case of Bernoulli-bandits. That is, reward of arm a $\in\{1,2, \ldots, K\}$ is $\operatorname{Ber}\left(\boldsymbol{p}_{\boldsymbol{a}}\right)$. Observe: The expected reward of arm a is just p_{a} (expectation of Bernoulli).

$\operatorname{Ber}\left(p_{1}\right)$

$\operatorname{Ber}\left(p_{2}\right)$
$\operatorname{Ber}\left(p_{3}\right)$

Regret

Regret is the difference between:

- The best possible expected reward (always pull the best arm)
- The actual reward you got

Regeret

Regret is the difference between:

- The best possible expected reward (always pull the best arm) - The actual reward you got

Let $p^{*}=\max _{i \in\{1,2, \ldots, K\}} p_{i}$ denote the highest expected reward from one of the K arms.

Regeret

Regret is the difference between:

- The best possible expected reward (always pull the best arm) - The actual reward you got

Let $p^{*}=\max _{i \in\{1,2, \ldots, K\}} p_{i}$ denote the highest expected reward from one of the K arms.

Regeret

Regret is the difference between:

- The best possible expected reward (always pull the best arm) - The actual reward you got

Let $p^{*}=\max _{i \in\{1,2, \ldots, K\}} p_{i}$ denote the highest expected reward from one of the K arms.

Regeret

Regret is the difference between:

- The best possible expected reward (always pull the best arm) - The actual reward you got

Let $p^{*}=\max _{i \in\{1,2, \ldots, K\}} p_{i}$ denote the highest expected reward from one of the K arms.

Regret

Regret is the difference between:

- The best possible expected reward (always pull the best arm)
- The actual reward you got

Let $p^{*}=\max _{i \in\{1,2, \ldots, K\}} p_{i}$ denote the highest expected reward from one of the K arms.

$$
\begin{gathered}
\operatorname{Regret}(T)=T p^{*}-\operatorname{Reward}(T) \\
\operatorname{Avg}-\operatorname{Regret}(T)=p^{*}-\frac{\operatorname{Reward}(T)}{T}
\end{gathered}
$$

Regret

Regret is the difference between:

- The best possible expected reward (always pull the best arm) - The actual reward you got

Let $p^{*}=\max _{i \in\{1,2, \ldots, K\}} p_{i}$ denote the highest expected reward from one of the K arms.

$$
\begin{gathered}
\operatorname{Regret}(T)=T p^{*}-\operatorname{Reward}(T) \\
\operatorname{Avg}-\operatorname{Regret}(T)=p^{*}-\frac{\operatorname{Reward}(T)}{T}
\end{gathered}
$$

Want Avg-Regret $(T) \rightarrow 0$ as $T \rightarrow \infty$. Minimizing Regret $=$ Maximizing Reward.

(Bernoulli) Bandit Framework

How do we choose an arm at each time step (depending on past history), to maximize our total reward?

Algorithm 1 (Bernoulli) Bandit Framework

1: Have K arms, where pulling arm $i \in\{1, \ldots, K\}$ gives $\operatorname{Ber}\left(p_{i}\right)$ reward $\quad \triangleright p_{i}$'s all unknown.

(Bernoulli) Bandit Framework

How do we choose an arm at each time step (depending on past history), to maximize our total reward?

```
Algorithm 1 (Bernoulli) Bandit Framework
    1: Have \(K\) arms, where pulling arm \(i \in\{1, \ldots, K\}\) gives \(\operatorname{Ber}\left(p_{i}\right)\) reward \(\quad \triangleright p_{i}\) 's all unknown.
    2: for \(t=1, \ldots, T\) do -
    3: At time \(t\), pull arm \(a_{t} \in\{1, \ldots, K\}\). \(\quad \triangleright\) How do we do decide which arm?
```


(Bernoulli) Bandit framework

How do we choose an arm at each time step (depending on past history), to maximize our total reward?

```
Algorithm 1 (Bernoulli) Bandit Framework
    1: Have \(K\) arms, where pulling arm \(i \in\{1, \ldots, K\}\) gives \(\operatorname{Ber}\left(p_{i}\right)\) reward \(\quad \triangleright p_{i}\) 's all unknown.
    2: for \(t=1, \ldots, T\) do
    3: At time \(t\), pull arm \(a_{t} \in\{1, \ldots, K\}\). \(\quad \triangleright\) How do we do decide which arm?
    4: Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right) . \quad \triangleright\) Reward is either 1 or 0 .
```


(Bernoulli) Bandit framework

How do we choose an arm at each time step (depending on past history), to maximize our total reward?

```
Algorithm 1 (Bernoulli) Bandit Framework
    1: Have \(K\) arms, where pulling arm \(i \in\{1, \ldots, K\}\) gives \(\operatorname{Ber}\left(p_{i}\right)\) reward \(\quad \triangleright p_{i}\) 's all unknown.
    2: for \(t=1, \ldots, T\) do
    3: At time \(t\), pull arm \(a_{t} \in\{1, \ldots, K\}\). \(\quad \triangleright\) How do we do decide which arm?
    4: Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\). \(\quad \triangleright\) Reward is either 1 or 0 .
    This is the focus of the rest of this lecture!
```


Motivation: Clinical Trials

$\mathrm{K}=4$ Arms (Treatments)

Motivation: Clinical Trials

$\mathrm{K}=4$ Arms (Treatments)
For patient \dagger, prescribe treatment $a_{\dagger} \in\{1,2,3,4\}$.

Motivation: Clinical Trials

K = 4 Arms (Treatments)
For patient t, prescribe treatment $a_{\dagger} \in\{1,2,3,4\}$.
Observe reward $r_{+} \in\{0,1\}$. (1 if healed, 0 if not)

Motivation: Clinical Trials

K = 4 Arms (Treatments)
For patient t, prescribe treatment $a_{\dagger} \in\{1,2,3,4\}$.
Observe reward $r_{+} \in\{0,1\}$. (1 if healed, 0 if not)
Maximize: Total number of patients healed.

Motivation: Recommending Movies

K Movies
For visitor \dagger, recommend movie $a_{\dagger} \in\{1,2, \ldots, K\}$.

Motivaition: Recommending Movies

K Movies

For visitor \dagger, recommend movie $a_{\dagger} \in\{1,2, \ldots, K\}$.
Observe reward $r_{+} \in\{1,2,3,4,5\}$. (rating)
Maximize: Total/average rating of recommendations.

Motivaition: Real Life?? (FOOD)

K Cuisines/Dishes (a ton)
For meal \dagger, eat dish $a_{\dagger} \in\{1,2, \ldots, K\}$.

Motivation: Real Life?? (FOOD)

K Cuisines/Dishes (a ton)
For meal \dagger, eat dish $a_{\dagger} \in\{1,2, \ldots, K\}$.
Observe reward $r_{+} \in\{1,2,3,4,5\}$. (happiness rating)
Maximize: Total/average happiness :)

Motivation: Real Life?? (FOOD)

K Cuisines/Dishes (a ton)
For meal \dagger, eat dish $a_{\dagger} \in\{1,2, \ldots, K\}$.
Observe reward $r_{+} \in\{1,2,3,4,5\}$. (happiness rating)

Maximize: Total/average happiness :)
The Question of the Day: Explore or Exploit????

Motivation: Real Life?? (Activities)

K Activities

On day t, do activity $a_{+} \in\{1,2, \ldots, K\}$.
Observe reward $r_{+} \in\{1,2,3,4,5\}$. (happiness rating)
Maximize: Total/average happiness :)
The Question of the Day: Explore or Exploit????

Any Ideas on what strategy we can use???

Greedy (Naive) Algorithm

Algorithm 2 Greedy (Naive) Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with $K M \leq T$.

Greedy (Naive) Algorithm

Algorithm 2 Greedy (Naive) Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with $K M \leq T$.
2: for $i=1,2, \ldots, K$ do
3: \quad Pull arm $i M$ times, observing iid rewards $r_{i 1}, \ldots, r_{i M} \sim \operatorname{Ber}\left(p_{i}\right)$.
Estimate $\hat{p}_{i}=\frac{\sum_{j=1}^{M} r_{i j}}{M}$.

Greedy (Naive) Algorithm

Algorithm 2 Greedy (Naive) Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with $K M \leq T$.
2: for $i=1,2, \ldots, K$ do
3: \quad Pull arm $i M$ times, observing iid rewards $r_{i 1}, \ldots, r_{i M} \sim \operatorname{Ber}\left(p_{i}\right)$.
4: Estimate $\hat{p}_{i}=\frac{\sum_{j=1}^{M} r_{i j}}{M}$.
5: Determine best (empirical) arm $a^{*}=\arg \max _{i \in\{1,2, \ldots, K\}} \hat{p}_{i}$.

- We could be wrong...

Greedy (Naive) Algorithm

Algorithm 2 Greedy (Naive) Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with $K M \leq T$.
2: for $i=1,2, \ldots, K$ do
3: \quad Pull arm $i M$ times, observing iid rewards $r_{i 1}, \ldots, r_{i M} \sim \operatorname{Ber}\left(p_{i}\right)$.
4: \quad Estimate $\hat{p}_{i}=\frac{\sum_{j=1}^{M} r_{i j}}{M}$.
5: Determine best (empirical) $\operatorname{arm} a^{*}=\arg \max _{i \in\{1,2, \ldots, K\}} \hat{p}_{i}$.
\triangleright We could be wrong...
for $t=K M+1, K M+2, \ldots, T$ do:
Pull arm $a_{t}=a^{*} . \quad \Delta$ Pull the same arm for the rest of time.
Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.

Greedy (Naive) Algorithm

Algorithm 2 Greedy (Naive) Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with $K M \leq T$.
2: for $i=1,2, \ldots, K$ do
3: \quad Pull arm $i M$ times, observing iid rewards $r_{i 1}, \ldots, r_{i M} \sim \operatorname{Ber}\left(p_{i}\right)$.
4: Estimate $\hat{p}_{i}=\frac{\sum_{j=1}^{M} r_{i j}}{M}$.
5: Determine best (empirical) arm $a^{*}=\arg \max _{i \in\{1,2, \ldots, K\}} \hat{p}_{i}$.
\triangleright We could be wrong...
for $t=K M+1, K M+2, \ldots, T$ do:
Pull arm $a_{t}=a^{*} . \quad \Delta$ Pull the same arm for the rest of time.
Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
If we make a mistake, we will regret our decision for the rest of time....
Can we not do all of our exploration at the beginning?

Epsilon-Greedy Algorithm

\mathcal{E}

Explore with probability epsilon!
Algorithm 3ε-Greedy Strategy for Bernoulli Bandits
1: Choose a number of times M to pull each arm initially, with $K M \leq T$.
2: for $i=1,2, \ldots, K$ do
3: \quad Pull arm $i M$ times, observing iid rewards $r_{i 1}, \ldots, r_{i M} \sim \operatorname{Ber}\left(p_{i}\right)$.
4: Estimate $\hat{p}_{i}=\frac{\sum_{j=1}^{M} r_{i j}}{M}$.

Epsilon-Greedy Algorithm

Explore with probability epsilon!

```
Algorithm \(3 \varepsilon\)-Greedy Strategy for Bernoulli Bandits
    1: Choose a number of times \(M\) to pull each arm initially, with \(K M \leq T\).
    2: for \(i=1,2, \ldots, K\) do
    3: \(\quad\) Pull arm \(i M\) times, observing iid rewards \(r_{i 1}, \ldots, r_{i M} \sim \operatorname{Ber}\left(p_{i}\right)\).
4: Estimate \(\hat{p}_{i}=\frac{\sum_{j=1}^{M} r_{i j}}{M}\).
    5: for \(t=K M+1, K M+2, \ldots, T\) do:
    6: \(\quad\) if \(\operatorname{Ber}(\varepsilon)==1:\) then
    7: \(\quad\) Pull arm \(a_{t}=\operatorname{Unif}(1, K)\) (discrete).
    - With probabilitsexplore.
```

- With probabilits explore.
\triangleright Choose a uniformly random arm.

Epsilon-Greedy Algorithm

Explore with probability epsilon!

```
Algorithm \(3 \varepsilon\)-Greedy Strategy for Bernoulli Bandits
    1: Choose a number of times \(M\) to pull each arm initially, with \(K M \leq T\).
    for \(i=1,2, \ldots, K\) do
        Pull \(\operatorname{arm} i M\) times, observing iid rewards \(r_{i 1}, \ldots, r_{i M} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=\frac{\sum_{j=1}^{M} r_{i j}}{M}\).
    for \(t=K M+1, K M+2, \ldots, T\) do:
        if \(\operatorname{Ber}(\varepsilon)=1\) : then
            Pull arm \(a_{t}=\operatorname{Unif}(1, K)\) (discrete).
        else
            Pull \(\operatorname{arm} a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} \hat{p}_{i}\).
                            \(\triangleright\) With probability \(\varepsilon\), explore.
                            \(\triangleright\) Choose a uniformly random arm.
                                \(\triangle\) With probability \(1-\varepsilon\), exploit.
    \(\triangle\) Choose arm with highest estimated reward.
```


Epsilon-Greedy Algorithm

Explore with probability epsilon!

```
Algorithm \(3 \varepsilon\)-Greedy Strategy for Bernoulli Bandits
    1: Choose a number of times \(M\) to pull each arm initially, with \(K M \leq T\).
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i M\) times, observing iid rewards \(r_{i 1}, \ldots, r_{i M} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=\frac{\sum_{j=1}^{M} r_{i j}}{M}\).
    for \(t=K M+1, K M+2, \ldots, T\) do:
        if \(\operatorname{Ber}(\varepsilon)==1\) : then
            Pull arm \(a_{t}=\operatorname{Unif}(1, K)\) (discrete).
        else
            Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} \hat{p}_{i} . \quad \triangleright\) Choose arm with highest estimated reward.
            Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
            Update \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```


Epsilon-Greedy Algorithm

Explore with probability epsilon!

```
Algorithm \(3 \varepsilon\)-Greedy Strategy for Bernoulli Bandits
    1: Choose a number of times \(M\) to pull each arm initially, with \(K M \leq T\).
    2: for \(i=1,2, \ldots, K\) do
    3: \(\quad\) Pull arm \(i M\) times, observing iid rewards \(r_{i 1}, \ldots, r_{i M} \sim \operatorname{Ber}\left(p_{i}\right)\).
    4: Estimate \(\hat{p}_{i}=\frac{\sum_{j=1}^{M} r_{i j}}{M}\).
    for \(t=K M+1, K M+2, \ldots, T\) do:
        if \(\operatorname{Ber}(\varepsilon)==1\) : then
            Pull arm \(a_{t}=\operatorname{Unif}(1, K)\) (discrete).
        else
            Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} \hat{p}_{i} . \quad \triangleright\) Choose arm with highest estimated reward.
            Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
            Update \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```


Upper Confidence Bound (UCB) Algorithm

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the highest upper confidence bound (if the confidence interval is [a, b], we compare only the value of b)

Upper Confidence Bound (UCB) Algorithm

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
 1: for $i=1,2, \ldots, K$ do
 2: Pull arm i once, observing $r_{i} \sim \operatorname{Ber}\left(p_{i}\right)$.
 3: \quad Estimate $\hat{p}_{i}=r_{i} / 1$.
 \triangleright Each estimate \hat{p}_{i} will initially either be 1 or 0 .

Upper Confidence Bound (UCB) Algorithm

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
    Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
    3: \(\quad\) Estimate \(\hat{p}_{i}=r_{i} / 1\).
        - Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
    5: Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(\underline{N}_{t}^{N_{t}(i)}\) is the number of times arm
\(i\) was pulled before time \(t\).
```


Upper Confidence Bound (UCB) Algorithm

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
    Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i} / 1\).
        \(\triangleright\) Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
    5: \(\quad\) Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
```


Upper Confidence Bound (UCB) Algorithm

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
    Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i} / 1\).
        \(\triangleright\) Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
    5: \(\quad\) Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
```

Point estimate/ Max-likelihood estimate

Takes the upper part of of
the confidence interval.

Upper Confidence Bound (UCB) Algorithm

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i} / 1\).
        \(\triangleright\) Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
    5: Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
        \(i\) was pulled before time \(t\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
```


Upper Confidence Bound (UCB) Algorithm

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the highest upper confidence bound (if the confidence interval is [a,b], we compare only the value of b)

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i} / 1\).
        \(\triangleright\) Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
    5: \(\quad\) Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
        Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```


UPPER CONFIDENCE BOUND (UCB) AlGORITHM

This algorithm constructs confidence intervals for the estimates of each arm, and chooses the arm with the highest upper confidence bound (if the confidence interval is [a,b], we compare only the values of b).

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i} / 1\).
                            \(\triangleright\) Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
    5: \(\quad\) Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
    Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
    Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```

Exploration is "baked in": the frequently pulled arms will have narrow confidence intervals (and hence a lower upper bound), and the less-frequently pulled arms will have wide intervals (and hence a higher upper bound).

UCB: CONFIDENCE INTERVALS OVER TIME Confidence Intervals for Mean of Each Arm: t=10

UCB: CONfidence Intervals over Time Confidence Intervals for Mean of Each Arm: $\mathbf{t = 1 0}$

[^0]
UCB: Confidence Intervals over Time
 Confidence Intervals for Mean of Each Arm: $\mathbf{t = 1 0}$

Confidence Intervals for Mean of Each Arm: $\mathbf{t = 5 0}$

UCB: Confidence Intervals over Time
 Confidence Intervals for Mean of Each Arm: $\mathbf{t = 1 0}$

Confidence Intervals for Mean of Each Arm: $\mathbf{t = 5 0}$

Confidence Intervals for Mean of Each Arm: $\mathbf{t = 1 0 0}$

UCB: Confidence Intervals over Time
 Confidence Intervals for Mean of Each Arm: $\mathbf{t = 1 0}$

Confidence Intervals for Mean of Each Arm: $\mathbf{t = 5 0}$

Confidence Intervals for Mean of Each Arm: $\mathbf{t = 1 0 0}$

Confidence Intervals for Mean of Each Arm: t=10000


```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
```

 for \(i=1,2, \ldots, K\) do
 Pull arm i once, observing $r_{i} \sim \operatorname{Ber}\left(p_{i}\right)$.
Estimate $\hat{p}_{i}=r_{i}$.
\triangleright Each estimate \hat{p}_{i} will initially either be 1 or 0 .
for $t=K+1, K+2, \ldots, T$ do:
5: Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$, where $N_{t}(i)$ is the number of times arm i was pulled before time t.
6: \quad Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
7: \quad Update $N_{t}\left(a_{t}\right)$ and $\hat{p}_{a_{t}}$ (using newly observed reward r_{t}).
d

Arm (i)	True p_{i}	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	UCB $\left(\hat{p}_{i}+\sqrt{\left.\frac{2 \ln (t)}{N_{t}(i)}\right)}\right.$
1	0.5				
2	0.2				
3	0.9				
$\boldsymbol{2}$					

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
```

 for \(i=1,2, \ldots, K\) do
 Pull arm i once, observing $r_{i} \sim \operatorname{Ber}\left(p_{i}\right)$.
Estimate $\hat{p}_{i}=r_{i}$.
\triangleright Each estimate \hat{p}_{i} will initially either be 1 or 0 .
for $t=K+1, K+2, \ldots, T$ do:
5: Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$, where $N_{t}(i)$ is the number of times arm i was pulled before time t.

Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
Update $N_{t}\left(a_{t}\right)$ and $\hat{p}_{a_{t}}$ (using newly observed reward r_{t}).

Arm (i)	True p_{i}	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5				
2	0.2				
3	0.9				

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$

We don't actually know these...

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

for $i=1,2, \ldots, K$ do Pull arm i once, observing $r_{i} \sim \operatorname{Ber}\left(p_{i}\right)$.
Estimate $\hat{p}_{i}=r_{i}$.
Each estimate \hat{p}_{i} will initially either be 1 or 0 .
for $t=K+1, K+2, \ldots, T$ do:
5: Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$, where $N_{t}(i)$ is the number of times arm i was pulled before time t.

Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
Update $N_{t}\left(a_{t}\right)$ and $\hat{p}_{a_{t}}$ (using newly observed reward r_{t}).

Arm (i)	True p $_{\mathrm{i}}$	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5				
2	0.2				
3	0.9				

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
1	1	0

At time 1, we pull arm 1, and observe either a 1 (with probability 0.5) or a 0 (with probability 1-0.5).
We happen to observe a 0 .

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
```

 for \(i=1,2, \ldots, K\) do
 Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
 Estimate \(\hat{p}_{i}=r_{i}\).
 \(\triangleright\) Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
 for \(t=K+1, K+2, \ldots, T\) do:
 5: Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
 \(i\) was pulled before time \(t\).
 Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
 Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\)).
 | Arm
 (i) | True p $_{\mathrm{i}}$ | \# Times
 Pulled | Total
 Reward | $\hat{\boldsymbol{p}}_{\boldsymbol{i}}$ | UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.5 | 1 | 0 | $0 / 1$ | |
| 2 | 0.2 | | | | |
| 3 | 0.9 | | | | |

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
1	1	0

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

for $i=1,2, \ldots, K$ do Pull arm i once, observing $r_{i} \sim \operatorname{Ber}\left(p_{i}\right)$.
Estimate $\hat{p}_{i}=r_{i}$.
Each estimate \hat{p}_{i} will initially either be 1 or 0 .
for $t=K+1, K+2, \ldots, T$ do:
5: Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$, where $N_{t}(i)$ is the number of times arm i was pulled before time t.

Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
Update $N_{t}\left(a_{t}\right)$ and $\hat{p}_{a_{t}}$ (using newly observed reward r_{t}).

Arm (i $)$	True p $_{\mathrm{i}}$	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5	1	0	$0 / 1$	
2	0.2				
3	0.9				

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
2	2	0

At time 2, we pull arm 2, and observe either a 1 (with probability 0.2) or a 0 (with probability 1-0.2). We happen to observe a 0 .

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
```

 for \(i=1,2, \ldots, K\) do
 Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
 Estimate \(\hat{p}_{i}=r_{i}\).
 \(\triangleright\) Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
 for \(t=K+1, K+2, \ldots, T\) do:
 5: \(\quad\) Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
 \(i\) was pulled before time \(t\).
 Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
 Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\)).
 | Arm
 (i) | True p_{i} | \# Times
 Pulled | Total
 Reward | $\hat{\boldsymbol{p}}_{\boldsymbol{i}}$ | UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.5 | 1 | 0 | $0 / 1$ | |
| 2 | 0.2 | 1 | 0 | $0 / 1$ | |
| 3 | 0.9 | | | | |

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
2	2	0

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

for $i=1,2, \ldots, K$ do Pull arm i once, observing $r_{i} \sim \operatorname{Ber}\left(p_{i}\right)$.
Estimate $\hat{p}_{i}=r_{i}$.
Each estimate \hat{p}_{i} will initially either be 1 or 0 .
for $t=K+1, K+2, \ldots, T$ do:
5: Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$, where $N_{t}(i)$ is the number of times arm i was pulled before time t.

Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
Update $N_{t}\left(a_{t}\right)$ and $\hat{p}_{a_{t}}$ (using newly observed reward r_{t}).

Arm (i $)$	True p $_{\mathrm{i}}$	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5	1	0	$0 / 1$	
2	0.2	1	0	$0 / 1$	
3	0.9				

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
3	3	1

At time 3, we pull arm 3, and observe either a 1 (with probability 0.9) or a 0 (with probability 1-0.9). We happen to observe a 1.

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
```

 for \(i=1,2, \ldots, K\) do
 Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
 Estimate \(\hat{p}_{i}=r_{i}\).
 \(\triangleright\) Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
 for \(t=K+1, K+2, \ldots, T\) do:
 5: \(\quad\) Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
 \(i\) was pulled before time \(t\).
 Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
 Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\)).
 | Arm
 (i) | True p $_{\mathrm{i}}$ | \# Times
 Pulled | Total
 Reward | $\hat{\boldsymbol{p}}_{\boldsymbol{i}}$ | UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.5 | 1 | 0 | $0 / 1$ | |
| 2 | 0.2 | 1 | 0 | $0 / 1$ | |
| 3 | 0.9 | 1 | 1 | $1 / 1$ | |

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
3	3	1

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i}\).
                            - Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
        Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
        Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```

Arm (i)	True p_{i}	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	$\mathbf{U C B}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5	1	0	$0 / 1$	
2	0.2	1	0	$0 / 1$	
3	0.9	1	1	$1 / 1$	

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
4		

At time 4, we must compute all our upper confidence bounds, and choose the best one.

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i}\).
                            - Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
        Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
        Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```



```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i}\).
                            - Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
        Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
        Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```



```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i}\).
                            - Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
        Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
        Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```

Arm (i)	True p_{i}	\# Times Pulled	Total Reward	\hat{p}_{i}	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$	Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward$\left(r_{t}\right)$
1	0.5	1	0	0/1	1.665			
2	0.2	1	0	0/1	1.665	4		
3	0.9	1	1	1/1	2.665		2爯(4)	
At time 4, we must compute all our upper confidence bounds, and choose the best one.$1+\sqrt{\frac{2 \ln (4)}{1}} \approx 2.665$								

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i}\).
                            - Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
        Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
        Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(\left.r_{t}\right)\).
```

Arm (i)	True p $_{\mathrm{i}}$	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5	1	0	$0 / 1$	1.665
2	0.2	1	0	$0 / 1$	1.665
3	0.9	1	1	$1 / 1$	2.665

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
4	3	

At time 4, arm 3 has the highest UCB so we pull it.

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
```

for $i=1,2, \ldots, K$ do

Pull arm i once, observing $r_{i} \sim \operatorname{Ber}\left(p_{i}\right)$.
Estimate $\hat{p}_{i}=r_{i}$.
\triangleright Each estimate \hat{p}_{i} will initially either be 1 or 0 .
for $t=K+1, K+2, \ldots, T$ do:
Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$, where $N_{t}(i)$ is the number of times arm i was pulled before time t.

Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
Update $N_{t}\left(a_{t}\right)$ and $\hat{p}_{a_{t}}$ (using newly observed reward r_{t}).

Arm (i)	True p $_{\mathrm{i}}$	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5	1	0	$0 / 1$	1.665
2	0.2	1	0	$0 / 1$	1.665
3	0.9	1	1	$1 / 1$	2.665

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
4	3	0

At time 4, arm 3 has the highest UCB so we pull it. We observe a reward of 0 .

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
```

for $i=1,2, \ldots, K$ do

Pull arm i once, observing $r_{i} \sim \operatorname{Ber}\left(p_{i}\right)$.
Estimate $\hat{p}_{i}=r_{i}$.
\triangleright Each estimate \hat{p}_{i} will initially either be 1 or 0 .
for $t=K+1, K+2, \ldots, T$ do:
5: Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$, where $N_{t}(i)$ is the number of times arm i was pulled before time t.

Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
Update $N_{t}\left(a_{t}\right)$ and $\hat{p}_{a_{t}}$ (using newly observed reward r_{t}).

Arm (i $)$	True p $_{\mathrm{i}}$	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5	1	0	$0 / 1$	
2	0.2	1	0	$0 / 1$	
3	0.9	2	1	$1 / 2$	

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
4	3	0

At time 4, arm 3 has the highest UCB so we pull it. We observe a reward of 0 .
Then we update our estimate for p_{3}.

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i}\).
                            - Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
        Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
        Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```

Arm (i)	True p_{i}	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	$\mathbf{U C B}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5	1	0	$0 / 1$	
2	0.2	1	0	$0 / 1$	
3	0.9	2	1	$1 / 2$	

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
5		

At time 5, we must compute all our upper confidence bounds, and choose the best one.

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i}\).
                            - Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
        Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
        Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```

Arm (i)	True p_{i}	\# Times Pulled	Total Reward	\hat{p}_{i}	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$	Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward (r_{t})		
1	0.5	1	0	0/1	1.794					
2	0.2	1	0	0/1		5				
3	0.9	2	1	1/2						
$\sqrt{\frac{2 \ln (5)}{1}} \approx 1.794$										

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i}\).
                            - Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
        Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
        Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```

Arm	True p_{i}	\# Times	Total	\hat{p}_{i}	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t(i)}}}\right)$			
					UCB $\left(\hat{p}_{t}+\sqrt{N_{t}(i)}\right)$	Time	Arm Pulled	Reward
1	0.5	1	0	0/1	1.794	(t)	$\left(a_{t}\right)$	$\left(r_{t}\right)$
2	0.2	1	0	0/1	1.794	5		
3	0.9	2	1	1/2				
$0+\sqrt{\frac{2 \ln (5)}{1}} \approx 1.794$								

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i}\).
                            - Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
        Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
        Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```

Arm (i)	True p_{i}	\# Times Pulled	Total Reward	\hat{p}_{i}	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$	Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
1	0.5	1	0	0/1	1.794			
2	0.2	1	0	0/1	1.794	5		
3	0.9	2	1	1/2	1.769			
					ds, and		$\frac{1}{2}+\sqrt{\frac{2 \ln (5)}{2}}$	1.769

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
    for \(i=1,2, \ldots, K\) do
        Pull arm \(i\) once, observing \(r_{i} \sim \operatorname{Ber}\left(p_{i}\right)\).
        Estimate \(\hat{p}_{i}=r_{i}\).
                            - Each estimate \(\hat{p}_{i}\) will initially either be 1 or 0 .
    for \(t=K+1, K+2, \ldots, T\) do:
    5: Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)\), where \(N_{t}(i)\) is the number of times arm
    \(i\) was pulled before time \(t\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
        Update \(N_{t}\left(a_{t}\right)\) and \(\hat{p}_{a_{t}}\) (using newly observed reward \(r_{t}\) ).
```

Arm (i)	True p $_{\mathrm{i}}$	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5	1	0	$0 / 1$	1.794
2	0.2	1	0	$0 / 1$	1.794
3	0.9	2	1	$1 / 2$	1.769

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
5	1	

At time 5, arms 1 and 2 have the highest UCB so we pull one of them (let's break ties by choosing the smaller index arm). So we pull arm 1.

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
```

for $i=1,2, \ldots, K$ do

Pull arm i once, observing $r_{i} \sim \operatorname{Ber}\left(p_{i}\right)$.
Estimate $\hat{p}_{i}=r_{i}$.
\triangleright Each estimate \hat{p}_{i} will initially either be 1 or 0 .
for $t=K+1, K+2, \ldots, T$ do:
Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$, where $N_{t}(i)$ is the number of times arm
i was pulled before time t.
Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
Update $N_{t}\left(a_{t}\right)$ and $\hat{p}_{a_{t}}$ (using newly observed reward r_{t}).

Arm (i $)$	True p $_{\mathrm{i}}$	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5	1	0	$0 / 1$	1.794
2	0.2	1	0	$0 / 1$	1.794
3	0.9	2	1	$1 / 2$	1.769

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
5	1	0

At time 5, arms 1 and 2 have the highest UCB so we pull one of them (let's break ties by choosing the smaller index arm). So we pull arm 1.
We observe a reward of 0 .

```
Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits
for \(i=1,2, \ldots, K\) do
```

Pull arm i once, observing $r_{i} \sim \operatorname{Ber}\left(p_{i}\right)$.
Estimate $\hat{p}_{i}=r_{i}$.
\triangleright Each estimate \hat{p}_{i} will initially either be 1 or 0 .
for $t=K+1, K+2, \ldots, T$ do:
5: Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$, where $N_{t}(i)$ is the number of times arm i was pulled before time t.

Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
Update $N_{t}\left(a_{t}\right)$ and $\hat{p}_{a_{t}}$ (using newly observed reward r_{t}).

Arm (i $)$	True p $_{\mathrm{i}}$	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5	2	0	$0 / 2$	
2	0.2	1	0	$0 / 1$	
3	0.9	2	1	$1 / 2$	

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
5	1	0

At time 5, arms 1 and 2 have the highest UCB so we pull one of them (let's break ties by choosing the smaller index arm). So we pull arm 1.
We observe a reward of 0 . Then we update our estimate for p_{1}.

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

for $i=1,2, \ldots, K$ do

Pull arm i once, observing $r_{i} \sim \operatorname{Ber}\left(p_{i}\right)$.
Estimate $\hat{p}_{i}=r_{i}$.
\triangleright Each estimate \hat{p}_{i} will initially either be 1 or 0 .
for $t=K+1, K+2, \ldots, T$ do:
5: Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}}\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$, where $N_{t}(i)$ is the number of times arm i was pulled before time t.

Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
Update $N_{t}\left(a_{t}\right)$ and $\hat{p}_{a_{t}}$ (using newly observed reward r_{t}).

Arm (i $)$	True p $_{\mathrm{i}}$	\# Times Pulled	Total Reward	$\hat{\boldsymbol{p}}_{\boldsymbol{i}}$	UCB $\left(\hat{p}_{i}+\sqrt{\frac{2 \ln (t)}{N_{t}(i)}}\right)$
1	0.5	2	0	$0 / 2$	
2	0.2	1	0	$0 / 1$	
3	0.9	2	1	$1 / 2$	

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
6		

And so on!!! Notice how we started exploring since the confidence bound grows with t for even the unexplored arms!

Thompson Sampling Algorithm 16

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

Thompson Sampling Algorithm

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    1: For each arm \(i \in\{1, \ldots, K\}\), initialize \(\alpha_{i}=\beta_{i}=1\).
    \(\triangleright\) Set \(\operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)\) prior for each \(p_{i}\).
```


Thompson Sampling Algorithm

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    1: For each arm \(i \in\{1, \ldots, K\}\), initialize \(\alpha_{i}=\beta_{i}=1\).
    \(\triangle\) Set \(\operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)\) prior for each \(p_{i}\).
    2: for \(t=1,2, \ldots, T\) do:
    3: \(\quad\) For each arm \(i\), get sample \(s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)\).
    \(\triangleright\) Each is a float in \([0,1]\).
```


Thompson Sampling Algorithm

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    1: For each arm \(i \in\{1, \ldots, K\}\), initialize \(\alpha_{i}=\beta_{i}=1\).
    \(\triangleright\) Set \(\operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)\) prior for each \(p_{i}\).
    2: for \(t=1,2, \ldots, T\) do:
    3: \(\quad\) For each arm \(i\), get sample \(s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)\).
    4: Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}\).
    \(\triangleright\) Each is a float in \([0,1]\)
    \(\triangleright\) This "bakes in" exploration!
```


Thompson Sampling Algorithm

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    1: For each arm \(i \in\{1, \ldots, K\}\), initialize \(\alpha_{i}=\beta_{i}=1\).
    \(\triangle\) Set \(\operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)\) prior for each \(p_{i}\).
    2: for \(t=1,2, \ldots, T\) do:
    3: \(\quad\) For each arm \(i\), get sample \(s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)\).
    4: Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}\).
    5: Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
```


Thompson Sampling Algorithm

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    1: For each arm \(i \in\{1, \ldots, K\}\), initialize \(\alpha_{i}=\beta_{i}=1\).
    \(\triangle\) Set Beta \(\left(\alpha_{i}, \beta_{i}\right)\) prior for each \(p_{i}\).
    2: for \(t=1,2, \ldots, T\) do:
    3: \(\quad\) For each arm \(i\), get sample \(s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)\).
    4: Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}\).
    5: Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
    6: \(\quad\) if \(r_{t}==1\) then \(\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1\).
    7: \(\quad\) else if \(r_{t}==0\) then \(\beta_{a_{t}} \leftarrow \beta_{a_{t}}+1\).
            \(\triangle\) Each is a float in \([0,1]\).
        \(\triangleright\) This "bakes in" exploration!
    \(\triangleright\) Increment number of "successes".
    \(\Delta\) Increment number of "failures".
```


Thompson Sampling Algorithm

Use MAP: Assume a Beta(1,1) (Uniform) prior on each unknown probability of reward.

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    1: For each arm \(i \in\{1, \ldots, K\}\), initialize \(\alpha_{i}=\beta_{i}=1\).
    \(\triangleright\) Set \(\operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)\) prior for each \(p_{i}\).
    2: for \(t=1,2, \ldots, T\) do:
    3: For each arm \(i\), get sample \(s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right) . \quad \triangleright\) Each is a float in \([0,1]\).
    4: Pull arm \(a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}\).
        Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
        if \(r_{t}==1\) then \(\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1\).
        else if \(r_{t}==0\) then \(\beta_{a_{t}} \leftarrow \beta_{a_{t}}+1\).
    \(\triangleright\) Increment number of "successes".
    \(\Delta\) Increment number of "failures".
```

The exploration comes in since we sample from each Beta distribution, rather than just choosing the one with largest expectation or mode (greedy).

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    : For each arm i\in{1,\ldots,K}, initialize }\mp@subsup{\alpha}{i}{}=\mp@subsup{\beta}{i}{}=
        \set Beta (\alpha, (\mp@subsup{\beta}{i}{})\mathrm{ prior for each pi}.
    for }t=1,2,\ldots,T\mathrm{ do:
        For each arm i, get sample si,t ~\operatorname{Beta}(\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})\mathrm{ .}
                            Each is a float in [0, 1].
4: Pull arm }\mp@subsup{a}{t}{}=\operatorname{arg}\mp@subsup{\operatorname{max}}{i\in{1,2,\ldots,K}}{}\mp@subsup{s}{i,t}{}
 This "bakes in" exploration!
```


Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

For each arm $i \in\{1, \ldots, K\}$, initialize $\alpha_{i}=\beta_{i}=1$
\triangle Set Beta $\left(\alpha_{i}, \beta_{i}\right)$ prior for each p_{i}.
for $t=1,2, \ldots, T$ do:
For each arm i, get sample $s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)$.
4: Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}$.
5: Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
6: \quad if $r_{t}==1$ then $\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1$.

- Increment number of "successes". \triangleright Increment number of "failures".
Example

THOMPSON

 Example

$\underset{\text { i) }}{\text { Arm }}$	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5			
2	0.2			
3	0.9			

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
```



```
    for t=1,2,\ldots,T do:
    For each arm i, get sample si,t ~\operatorname{Beta}(\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})\mathrm{ .}
4: Pull arm }\mp@subsup{a}{t}{}=\operatorname{arg}\mp@subsup{\operatorname{max}}{i\in{1,2,\ldots,K}}{}\mp@subsup{s}{i,t}{}
This "bakes in" exploration!
```

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
For each arm $i \in\{1, \ldots, K\}$, initialize $\alpha_{i}=\beta_{i}=1 . \Delta$ Set Beta $\left(\alpha_{i}, \beta_{i}\right)$ prior for each p_{i}. for $t=1,2, \ldots, T$ do:

For each arm i, get sample $s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)$.
4: \quad Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K}$,
6: \quad if $r_{t}==1$ then $\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1$.
7: \quad else if $r_{t}==0$ then $\beta_{a_{t}} \leftarrow \beta_{a_{t}}+1$.

- Increment number of "successes". \triangleright Increment number of "failures".
Example

Thompon

 Example

$\underset{\text { i) }}{\text { Arm }}$	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	
2	0.2	1	1	
3	0.9	1	1	

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
1		

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

: For each arm $i \in\{1, \ldots, K\}$, initialize $\alpha_{i}=\beta_{i}=1 . \quad \Delta$ Set Beta $\left(\alpha_{i}, \beta_{i}\right)$ prior for each p_{i}.

for $t=1,2, \ldots, T$ do:

For each arm i, get sample $s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)$.
\triangleright Each is a float in $[0,1]$.
Example
Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}$.
\triangleright This "bakes in" exploration!
5: \quad Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
6: \quad if $r_{t}==1$ then $\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1$.
จ Increment number of "successes". \triangleright Increment number of "failures".

Arm (i	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.43
2	0.2	1	1	
3	0.9	1	1	

Sample from Beta(1,1) density \rightarrow

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
1		

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

: For each arm $i \in\{1, \ldots, K\}$, initialize $\alpha_{i}=\beta_{i}=1 . \quad \Delta$ Set Beta $\left(\alpha_{i}, \beta_{i}\right)$ prior for each p_{i}.

for $t=1,2, \ldots, T$ do:

For each arm i, get sample $s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)$.
\triangleright Each is a float in $[0,1]$.
Example
Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}$.
\triangleright This "bakes in" exploration!
5: \quad Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
6: \quad if $r_{t}==1$ then $\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1$.
จ Increment number of "successes". \triangleright Increment number of "failures".

Arm (i	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.43
2	0.2	1	1	0.75
3	0.9	1	1	

Sample from Beta(1,1) density \rightarrow

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
1		

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

: For each arm $i \in\{1, \ldots, K\}$, initialize $\alpha_{i}=\beta_{i}=1 . \quad \Delta$ Set Beta $\left(\alpha_{i}, \beta_{i}\right)$ prior for each p_{i}.

for $t=1,2, \ldots, T$ do:

For each arm i, get sample $s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)$.
\triangleright Each is a float in $[0,1]$.
Example
Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}$.
\triangleright This "bakes in" exploration!
5: \quad Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
6: \quad if $r_{t}==1$ then $\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1$.
จ Increment number of "successes". \triangleright Increment number of "failures".

Arm (i	True p	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.43
2	0.2	1	1	0.75
3	0.9	1	1	0.11

Sample from Beta(1,1) density \rightarrow

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
1		

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    : For each arm i\in{1,\ldots,K}, initialize 和 = 隹=1. }>\mathrm{ Set Beta ( }\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})\mathrm{ prior for each pi
    for }t=1,2,\ldots,T\mathrm{ do:
        For each arm i, get sample }\mp@subsup{s}{i,}{}~\operatorname{Beta}(\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})
                            Each is a float in [0, 1].
4: Pull arm }\mp@subsup{a}{t}{}=\operatorname{arg}\mp@subsup{\operatorname{max}}{i\in{1,2,\ldots.K}}{}\mp@subsup{s}{i,t}{}
5: Receive reward rt ~ Ber ( }\mp@subsup{p}{\mp@subsup{a}{t}{}}{})\mathrm{ .
6: if }\mp@subsup{r}{t}{}==1\mathrm{ then }\mp@subsup{\alpha}{\mp@subsup{a}{t}{}}{}\leftarrow\mp@subsup{\alpha}{\mp@subsup{a}{t}{}}{}+1
\triangleright Increment number of "successes".
| Increment number of "failures".
```

Example

Arm i $)$	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.43
2	0.2	1	1	0.75
3	0.9	1	1	0.11

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
1	2	

Choose arm with highest sample!

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    :For each arm i\in{1,\ldots,K}, initialize }\mp@subsup{\alpha}{i}{}=\mp@subsup{\beta}{i}{}=1.\Delta\mathrm{ Set Beta ( }\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})\mathrm{ prior for each p}\mp@subsup{p}{i}{}\mathrm{ .
    for }t=1,2,\ldots,T\mathrm{ do:
        For each arm i, get sample }\mp@subsup{s}{i,t}{~}~\operatorname{Beta}(\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})\mathrm{ .
                            Each is a float in [0, 1].
4: Pull arm }\mp@subsup{a}{t}{}=\operatorname{arg}\mp@subsup{\operatorname{max}}{i\in{1,2,\ldots,K}}{}\mp@subsup{s}{i,t}{}
5: Receive reward r}\mp@subsup{r}{t}{}~\operatorname{Ber}(\mp@subsup{p}{\mp@subsup{a}{t}{}}{})\mathrm{ .
6: if }\mp@subsup{r}{t}{}==1\mathrm{ then }\mp@subsup{\alpha}{\mp@subsup{a}{t}{}}{}\leftarrow\mp@subsup{\alpha}{\mp@subsup{a}{t}{}}{}+1
7: else if }\mp@subsup{r}{t}{}==0\mathrm{ then }\mp@subsup{\beta}{\mp@subsup{a}{t}{}}{}\leftarrow\mp@subsup{\beta}{\mp@subsup{a}{t}{}}{}+1
\triangleright Increment number of "successes".
| Increment number of "failures".
```

Example

Arm i $)$	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.43
2	0.2	1	1	0.75
3	0.9	1	1	0.11

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
1	2	0

Observe reward 1 with probability 0.2 and 0 with probability 0.8 .

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    :For each arm i\in{1,\ldots,K}, initialize }\mp@subsup{\alpha}{i}{}=\mp@subsup{\beta}{i}{}=1.\Delta\mathrm{ Set Beta ( }\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})\mathrm{ prior for each p}\mp@subsup{p}{i}{}\mathrm{ .
    for }t=1,2,\ldots,T\mathrm{ do:
        For each arm i, get sample si,t ~\operatorname{Beta}(\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})\mathrm{ .}
                            Each is a float in [0, 1].
                             This "bakes in" exploration!
\triangleright Increment number of "successes".
                                \Delta Increment number of "failures".
```

Arm i $)$	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	
2	0.2	1	2	
3	0.9	1	1	

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
1	2	0

Add a count of 1 to the failures :(.

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

: For each arm $i \in\{1, \ldots, K\}$, initialize $\alpha_{i}=\beta_{i}=1 . \quad \Delta$ Set Beta $\left(\alpha_{i}, \beta_{i}\right)$ prior for each p_{i}.

for $t=1,2, \ldots, T$ do:

For each arm i, get sample $s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)$.
\triangleright Each is a float in $[0,1]$.
Example
Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}$.
\triangleright This "bakes in" exploration!
5: \quad Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
6: \quad if $r_{t}==1$ then $\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1$.
จ Increment number of "successes". \triangleright Increment number of "failures".

Arm $($ i	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.52
2	0.2	1	2	
3	0.9	1	1	

Sample from Beta(1,1) density \rightarrow

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
2		

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

: For each arm $i \in\{1, \ldots, K\}$, initialize $\alpha_{i}=\beta_{i}=1 . \quad \Delta$ Set Beta $\left(\alpha_{i}, \beta_{i}\right)$ prior for each p_{i}.

for $t=1,2, \ldots, T$ do:

For each arm i, get sample $s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)$.
\triangleright Each is a float in $[0,1]$.
Example
Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}$.
\triangleright This "bakes in" exploration!
5: \quad Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
6: \quad if $r_{t}==1$ then $\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1$.
\triangleright Increment number of "successes". \triangleright Increment number of "failures".

$\underset{\text { i })}{\text { Arm }}$	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.52
2	0.2	1	2	0.05
3	0.9	1	1	

Sample from Beta(1,2) density \rightarrow

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
2		

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

: For each arm $i \in\{1, \ldots, K\}$, initialize $\alpha_{i}=\beta_{i}=1 . \quad \Delta$ Set Beta $\left(\alpha_{i}, \beta_{i}\right)$ prior for each p_{i}.

for $t=1,2, \ldots, T$ do:

For each arm i, get sample $s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)$.
\triangleright Each is a float in $[0,1]$.
Example
Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}$.
\triangleright This "bakes in" exploration!
5: \quad Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
6: \quad if $r_{t}==1$ then $\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1$.
จ Increment number of "successes". \triangleright Increment number of "failures".

Arm $(~$ i	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.52
2	0.2	1	2	0.05
3	0.9	1	1	0.67

Sample from Beta(1,1) density \rightarrow

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
2		

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    : For each arm \(i \in\{1, \ldots, K\}\), initialize \(\alpha_{i}=\beta_{i}=1\)
        \(\triangle\) Set \(\operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)\) prior for each \(p_{i}\).
    for \(t=1,2, \ldots, T\) do:
        For each arm \(i\), get sample \(s_{i,} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)\).
                            Each is a float in \([0,1]\).
    Pull arm \(a_{t}=\arg \max _{i \in\{1,2 \ldots, K\}} s_{i, t}\).
5: \(\quad\) Receive reward \(r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)\).
6: \(\quad\) if \(r_{t}==1\) then \(\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1\).
\(\triangleright\) Increment number of "successes".
\(\triangleright\) Increment number of "failures".
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Time \\
\((t)\)
\end{tabular} & \begin{tabular}{c} 
Arm Pulled \\
\(\left(a_{t}\right)\)
\end{tabular} & \begin{tabular}{c} 
Reward \\
\(\left(r_{t}\right)\)
\end{tabular} \\
\hline 2 & 3 & \\
\hline
\end{tabular}
```

$E X A M P \mid E$

$\underset{\text { i })}{\text { Arm }}$	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.52
2	0.2	1	2	0.05
3	0.9	1	1	0.67

Choose arm with highest sample!

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    For each arm i\in{1,\ldots,K}, initialize }\mp@subsup{\alpha}{i}{}=\mp@subsup{\beta}{i}{}=1.\quad\triangleright\mathrm{ Set Beta }(\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})\mathrm{ prior for each pi.
    for }t=1,2,\ldots,T\mathrm{ do:
        For each arm i, get sample si,t ~\operatorname{Beta}(\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})\mathrm{ .}
                            Each is a float in [0, 1].
4: Pull arm }\mp@subsup{a}{t}{}=\operatorname{arg}\mp@subsup{\operatorname{max}}{i\in{1,2,\ldots,K}}{}\mp@subsup{s}{i,t}{
5: Receive reward r}\mp@subsup{r}{t}{}~\operatorname{Ber}(\mp@subsup{p}{\mp@subsup{a}{t}{}}{})
6: if }\mp@subsup{r}{t}{}==1\mathrm{ then }\mp@subsup{\alpha}{\mp@subsup{a}{t}{}}{}\leftarrow\mp@subsup{\alpha}{\mp@subsup{a}{t}{}}{}+1
7: else if }\mp@subsup{r}{t}{}==0\mathrm{ then }\mp@subsup{\beta}{\mp@subsup{a}{t}{}}{}\leftarrow\mp@subsup{\beta}{\mp@subsup{a}{t}{}}{}+1
\triangleright Increment number of "successes".
\Delta Increment number of "failures".
```

Example

Arm $($ i $)$	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.52
2	0.2	1	2	0.05
3	0.9	1	1	0.67

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
2	3	1

Observe reward 1 with probability 0.9 and 0 with probability 0.1.

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    :For each arm }i\in{1,\ldots,K}\mathrm{ , initialize }\mp@subsup{\alpha}{i}{}=\mp@subsup{\beta}{i}{}=1.\Delta\mathrm{ Set Beta ( }\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})\mathrm{ prior for each p}\mp@subsup{p}{i}{}
    for }t=1,2,\ldots,T\mathrm{ do:
        For each arm i, get sample si,t ~\operatorname{Beta}(\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})\mathrm{ .}
                            Each is a float in [0, 1].
                                Pull arm }\mp@subsup{a}{t}{}=\operatorname{arg}\mp@subsup{\operatorname{max}}{i\in{1,2,\ldots,K}}{}\mp@subsup{s}{i,t}{}\mathrm{ .
                            \triangleright ~ T h i s ~ " b a k e s ~ i n " ~ e x p l o r a t i o n !
\triangleright Increment number of "successes".
                                \Delta Increment number of "failures".
```

Example

Arm $(~$ i	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	
2	0.2	1	2	
3	0.9	2	1	

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
2	3	1

Add a count of 1 to the successes :).

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

: For each arm $i \in\{1, \ldots, K\}$, initialize $\alpha_{i}=\beta_{i}=1 . \quad \Delta$ Set Beta $\left(\alpha_{i}, \beta_{i}\right)$ prior for each p_{i}.

for $t=1,2, \ldots, T$ do:

For each arm i, get sample $s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)$.
\triangleright Each is a float in $[0,1]$.
ExAMPLE
Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}$.
\triangleright This "bakes in" exploration!
5: Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
6: \quad if $r_{t}==1$ then $\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1$.
\triangleright Increment number of "successes". \triangleright Increment number of "failures".

Arm $($ i $)$	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.44
2	0.2	1	2	0.27
3	0.9	2	1	0.86

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
3		

Sample from each arm's Beta distribution \rightarrow
$\xrightarrow[0.4]{0.6}$
\rightarrow Beta(1,1)

```
Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits
    : For each arm }i\in{1,\ldots,K}\mathrm{ , initialize }\mp@subsup{\alpha}{i}{}=\mp@subsup{\beta}{i}{}=
        \ Set Beta (\alpha, 的) prior for each pi
    for }t=1,2,\ldots,T\mathrm{ do:
            For each arm i. get sample si,, ~ Beta}a(\mp@subsup{\alpha}{i}{},\mp@subsup{\beta}{i}{})
                            Each is a float in [0, 1]
    Pull arm }\mp@subsup{a}{t}{}=\operatorname{arg}\mp@subsup{\operatorname{max}}{i\in{1,2,\ldots,K}}{}\mp@subsup{s}{i,t}{}\mathrm{ .
    Receive reward r}\mp@subsup{r}{t}{~}\operatorname{Ber}(\mp@subsup{p}{\mp@subsup{a}{t}{}}{})\mathrm{ .
    if }\mp@subsup{r}{t}{}==1\mathrm{ then }\mp@subsup{\alpha}{\mp@subsup{a}{t}{}}{}\leftarrow\mp@subsup{\alpha}{\mp@subsup{a}{t}{}}{}+1\mathrm{ .
    7: else if }\mp@subsup{r}{t}{}==0\mathrm{ then }\mp@subsup{\beta}{\mp@subsup{a}{t}{}}{}\leftarrow\mp@subsup{\beta}{\mp@subsup{a}{t}{}}{}+1\mathrm{ .
    \triangleright Increment number of "successes".
    \diamond Increment number of "failures".
```

Example

Arm $(~$ i	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.44
2	0.2	1	2	0.27
3	0.9	2	1	0.86

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
3	3	0

Observe reward 1 with probability 0.9 and 0 with probability 0.1.

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

: For each arm $i \in\{1, \ldots, K\}$, initialize $\alpha_{i}=\beta_{i}=1 . \Delta \operatorname{Set} \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)$ prior for each p_{i}.

for $t=1,2, \ldots, T$ do:

For each arm i, get sample $s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)$.
Each is a float in $[0,1]$.
Example
4: Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}$.
\triangleright This "bakes in" exploration!
5: Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a}\right)$.
6: \quad if $r_{t}==1$ then $\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1$.
7: \quad else if $r_{t}==0$ then $\beta_{a_{t}} \leftarrow \beta_{a_{t}}+1$.
\triangleright Increment number of "successes". \triangleright Increment number of "failures".

Arm i $)$	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.44
2	0.2	1	2	0.27
3	0.9	2	2	0.86

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
3	3	0

Add a count of 1 to the failures :(.

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

: For each arm $i \in\{1, \ldots, K\}$, initialize $\alpha_{i}=\beta_{i}=1 . \quad \Delta$ Set Beta $\left(\alpha_{i}, \beta_{i}\right)$ prior for each p_{i}.

for $t=1,2, \ldots, T$ do:

For each arm i, get sample $s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right)$.
\triangleright Each is a float in $[0,1]$.
Example
Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}$.
\triangleright This "bakes in" exploration!
5: Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
6: \quad if $r_{t}==1$ then $\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1$.
\triangleright Increment number of "successes". \triangleright Increment number of "failures".

Arm $($ i $)$	True p $_{\mathrm{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.63
2	0.2	1	2	0.15
3	0.9	2	2	0.44

Sample from each arm's Beta distribution $\rightarrow^{0.6}$

Time (t)	Arm Pulled $\left(\mathrm{a}_{\mathrm{t}}\right)$	Reward $\left(r_{\mathrm{t}}\right)$
4		

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

: For each arm $i \in\{1, \ldots, K\}$, initialize $\alpha_{i}=\beta_{i}=1 . \quad \Delta$ Set Beta $\left(\alpha_{i}, \beta_{i}\right)$ prior for each p_{i}.

for $t=1,2, \ldots, T$ do:

For each arm i, get sample $s_{i, t} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right) . \quad \triangleright$ Each is a float in $[0,1]$.
ExAMPLE
Pull arm $a_{t}=\arg \max _{i \in\{1,2, \ldots, K\}} s_{i, t}$.
\triangleright This "bakes in" exploration!
5: \quad Receive reward $r_{t} \sim \operatorname{Ber}\left(p_{a_{t}}\right)$.
6: \quad if $r_{t}==1$ then $\alpha_{a_{t}} \leftarrow \alpha_{a_{t}}+1$.
\triangleright Increment number of "successes". \triangleright Increment number of "failures".

Arm i $)$	True p $_{\mathrm{i}}$	$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{\beta}_{\boldsymbol{i}}$	$\boldsymbol{S}_{\boldsymbol{i}, \boldsymbol{t}}$
1	0.5	1	1	0.63
2	0.2	1	2	0.15
3	0.9	2	2	0.44

Time (t)	Arm Pulled $\left(a_{t}\right)$	Reward $\left(r_{t}\right)$
4		

And so on!!! Notice how we explore because there's some chance the "best" arm will have a lower sample occasionally and let other arms win!

UCB Vs thompson Sampling: Avg Regret over Time

UCB Vs Thompson Sampling: Proporition O F Time Pulled

(ucb) Proportion of Times Pulled vs Time

(thompson) Proportion of Times Pulled vs Time

Traditional A/B (Hypothesis) Testing

A large company wants to experiment releasing a new feature/modification.
Assign

- 99% of population to control group (current feature)
- 1% to experimental group (new feature).

Traditional A/B (Hypothesis) Testing

A large company wants to experiment releasing a new feature/modification.
Assign

- 99% of population to control group (current feature)
- 1% to experimental group (new feature).

This has the following consequences:

- If the new feature is "bad", very small percentage of the population sees it, so company protects itself.

Traditional A/B (Hypothesis) Testing

A large company wants to experiment releasing a new feature/modification.
Assign

- 99% of population to control group (current feature)
- 1% to experimental group (new feature).

This has the following consequences:

- If the new feature is "bad", very small percentage of the population sees it, so company protects itself.
- If the new feature is "good", very small percentage of the population sees it, so company may lose revenue.

Traditional A/B (Hypothesis) Testing

A large company wants to experiment releasing a new feature/modification.

Assign

- 99% of population to control group (current feature)
- 1% to experimental group (new feature).

This has the following consequences:

- If the new feature is "bad", very small percentage of the population sees it, so company protects itself.
- If the new feature is "good", very small percentage of the population sees it, so company may lose revenue.

Can we do better? Can we adaptively assign subjects to each group based on how each is performing rather than deciding at the beginning?

Traditional a/B (Hypothesis) Testing

A large compan
Assign

- 99% of po
- 1% to expe

This has the fo

- If the new protects i
- If the neu may lose r

MODERN A/B (Hypothesis) Testing

A large company wants to experiment releasing a new feature/modification.

Assign

- Arm 1: Current Feature
- Arm 2: New feature

MODERN A/B (Hypothesis) Testing

A large company wants to experiment releasing a new feature/modification.
Assign

- Arm 1: Current Feature
- Arm 2: New feature

When feature is requested by some user, use Multi-Armed Bandit algorithm to decide which feature to show!

MODERN A/B (Hypothesis) Testing

A large company wants to experiment releasing a new feature/modification.
Assign

- Arm 1: Current Feature
- Arm 2: New feature

When feature is requested by some user, use Multi-Armed Bandit algorithm to decide which feature to show!
(Can have any number of features/arms)

Modern a/B (Hypothesis) Testing

When to use Traditional A/B Testing:

- Need to collect data for critical business decisions.
- Need statistical confidence in all your results and impact. Want to learn even about treatments that didn't perform well.
- The reward is not immediate (e.g., if drug testing, don't have time to wait for each patient to finish before experimenting with next patient).
- Optimize/measure multiple metrics, not just one.

Modern a/B (Hypothesis) Testing

When to use Traditional A/B Testing:

- Need to collect data for critical business decisions.
- Need statistical confidence in all your results and impact. Want to learn even about treatments that didn't perform well.
- The reward is not immediate (e.g., if drug testing, don't have time to wait for each patient to finish before experimenting with next patient).
- Optimize/measure multiple metrics, not just one.

When to use Multi-Armed Bandits:

- No need for interpreting results, just maximize reward (typically revenue/engagement)
- The opportunity cost is high (if advertising a car, losing a conversion is $>=\$ 20,000$)
- Can add/remove arms in the middle of an experiment! Cannot do with A / B tests.

MOdern A/B (Hypothesis) Testing

When to use Traditional A/B Testing:

- Need to collect data for critical business decisions.
- Need statistical confidence in all your results and impact. Want to learn even about treatments that didn't perform well.
- The reward is not immediate (e.g., if drug testing, don't have time to wait for each patient to finish before experimenting with next patient).
- Optimize/measure multiple metrics, not just one.

When to use Multi-Armed Bandits:

- No need for interpreting results, just maximize reward (typically revenue/engagement)
- The opportunity cost is high (if advertising a car, losing a conversion is >=\$20,000)
- Can add/remove arms in the middle of an experiment! Cannot do with A / B tests.

The study of Multi-Armed Bandits can be categorized as:

- Statistics
- Optimization
- "Reinforcement Learning" (subfield of Machine Learning)

[^0]: Red Dots: True Means

