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Agenda

• Markov Chains

• Stationary Distributions

• Example

• Application: PageRank
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Definition: A discrete-time stochastic process (DTSP) is a sequence of 

random variables 𝑋(0), 𝑋(1),𝑋(2), . . . where 𝑋(𝑡) is the value at time 𝑡.

Today: 
see a very special type of DTSP 
Called a  Markov Chain



A day in my life (I wish)
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This type of probabilistic finite automaton is called a Markov Chain  
The next state depends only on the current state and not on the 
history
For ANY 𝑡 ≥ 0, 
if I was working at time t, then at t+1
with probability 0.4 I continue working
with probability 0.6, I switch to surfing, and 
with probability 0, I switch to emailing 

This is called History Independent (similar to memoryless)

t = 0



A day in my life (I wish)
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Many interesting questions.

1. What is the probability that I work at time 1?

2. What is the probability that I work at time 2?  

t                                           0                    1                       2

𝑞𝑤
𝑡

= Pr(𝑋(𝒕)= work)

𝑞𝑆
𝑡

= Pr(𝑋(𝒕)= surf)

𝑞𝐸
𝑡

= Pr(𝑋(𝒕)= email)

𝑋(𝒕) state I’m in at time t (random variable)
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Many interesting questions

1. What is the probability that I work at time 1?

2. What is the probability that I work at time 2?  

3. What is the probability that I work at time t=100? 

4. What is the probability that I’m working at some 
random time far in the future?



A day in my life (I wish)
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What is the probability I’m in each state at time t, 
as a function of the probability distribution over 
states at time t-1

t-1 t

𝑞𝑤
𝑡−1

= Pr(𝑋(𝒕−𝟏)= work) 𝑞𝑤
𝑡

=

𝑞𝑆
𝑡−1

= Pr(𝑋(𝒕−𝟏)= surf) 𝑞𝑆
𝑡

=

𝑞𝐸
𝑡−1

= Pr(𝑋(𝒕−𝟏)= email) 𝑞𝐸
𝑡

=

𝑋(𝒕) state I’m in at time t (random variable)



Transition Probability Matrix
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Apply 𝒒(𝑡) = 𝒒(𝑡−1) 𝑷 inductively. 

➔ 𝒒(𝑡) = 𝒒(0) 𝑷𝑡
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𝑷 =
.4 .6 0
.1 .6 .3
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The t-step walk 𝑷𝑡 Recall 𝒒(𝑡) = 𝒒(0) 𝑷𝑡
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What does this say 

about 𝒒(𝑡)? 

𝑷 =
.4 .6 0
.1 .6 .3
.5 0 .5



Agenda

• Markov Chains

• Stationary Distributions

• Example

• Application: PageRank
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Observation

If 𝑞(𝑡) = 𝑞(𝑡−1) then it will never change again!

Called a “stationary distribution” and has a special name 

𝝅 = (𝜋𝑊, 𝜋𝑆, 𝜋𝐸)

Solution to 𝝅 = 𝝅 𝑷
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.4 .6 0

.1 .6 .3

.5 0 .5

𝜋𝑤 , 𝜋𝑆 , 𝜋𝐸 = (𝜋𝑤 , 𝜋𝑆 , 𝜋𝐸 )



Solving for Stationary Distribution
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𝑷 =
.4 .6 0
.1 .6 .3
.5 0 .5

➔ As t → ∞, 𝒒(𝑡) → 𝜋 !!

Stationary Distribution satisfies
• 𝝅 = 𝝅𝑃, where  𝝅 = (𝜋𝑊, 𝜋𝑆, 𝜋𝐸)
• 𝜋𝑊 + 𝜋𝑆 + 𝜋𝐸 = 1

➔ 𝜋𝑊 =
15

34
, 𝜋𝑆=

10

34
, 𝜋𝐸=

9

34



Markov Chains in general

• A set of 𝑛 states {1, 2, 3, … n}

• The state at time t is denoted by 𝑋(𝑡)

• A transition matrix P, dimension 𝑛 × 𝑛

𝑷𝑖𝑗 = Pr 𝑋 𝑡+1 = 𝑗 X(𝑡) = 𝑖)

• 𝒒(𝑡) = (𝑞1
𝑡
, 𝑞2

𝑡
, … , 𝑞𝑛

𝑡
) where 𝑞𝑖

𝑡
= Pr(X(𝑡) = 𝑖)

• Transition: LTP ➔ 𝒒(𝑡) = 𝒒(𝑡−1) 𝑷 =⇒ 𝒒(𝑡) = 𝒒(0) 𝑷𝑡

• A stationary distribution 𝜋 is the solution to: 

𝜋 = 𝜋 𝑷,  normalized so that Σ𝑖∈[𝑛]𝜋𝑖 = 1
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The Fundamental Theorem of Markov Chain 

If a Markov chain is “irreducible” and “aperiodic”, then it has a 
unique stationary distribution. 

Moreover, as 𝑡 → ∞, for all 𝑖, 𝑗, 𝑷𝑖𝑗
𝑡 = 𝜋𝑗
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Stationary Distribution of a Markov Chain
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Definition. The stationary distribution of a Markov Chain with 𝑛
states is the 𝑛-dimensional row vector 𝝅 (which must be a probability 
distribution – nonnegative and sums to 1) such that

𝝅𝑷 = 𝝅

Intuition: Distribution over states at next step is the same as the distribution over 
states at the current step



Stationary Distribution of a Markov Chain
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Intuition: 𝒒(𝑡) is the distribution of being at each state at time 𝑡

computed by 𝒒(𝑡) = 𝒒(0)𝑷𝑡. As 𝑡 gets large 𝒒 𝑡 ≈ 𝒒 𝑡+1 .

Theorem. The Fundamental Theorem of Markov Chains says that 
(under some minor technical conditions), for a Markov Chain with 

transition probabilities 𝑃 and for any starting distribution 𝒒(0) over 
the states

lim
𝑡→∞

𝒒(0)𝑷𝑡 = 𝝅

where 𝝅 is the stationary distribution of 𝑷 (i.e., 𝝅𝑷 = 𝝅 )
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• Markov Chains

• Stationary Distributions

• Example

• Application: PageRank
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Another Example: Random Walks

Suppose we start at node 1, and at each step
transition to a neighboring node with equal
probability.

This is called a ”random walk” on this graph.
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Example: Random Walks
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Example: Random Walks
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Suppose we know that 𝑋 0 = 2. What is Pr 𝑋 2 = 3 ?
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3 5
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Agenda

• Markov Chains

• Stationary Distributions

• Example

• Application: PageRank
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PageRank: Some History

The year was 1997

– Bill Clinton in the White House

– Deep Blue beat world chess champion (Kasparov)

The internet was not like it was today. Finding stuff was hard!

– In Nov 1997, only one of the top 4 search engines actually found
itself when you searched for it
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The Problem

Search engines worked by matching words in your queries to 
documents. 

Not bad in theory, but in practice there are lots of documents 
that match a query.

– Search for Bill Clinton, top result is ‘Bill Clinton Joke of the Day’

– Susceptible to spammers and advertisers
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The Fix: Ranking Results

• Start by doing filtering to relevant documents (with decent 
textual match). 

• Then rank the results based on some measure of ‘quality’ or 
‘authority’.

Key question: How to define ‘quality’ or ‘authority’?

Enter two groups:
– Jon Kleinberg (professor at Cornell)

– Larry Page and Sergey Brin (Ph.D. students at Stanford)
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Both groups had the same brilliant idea 

Larry Page and Sergey Brin (Ph.D. students at Stanford)

– Took the idea and founded Google, making billions

Jon Kleinberg (professor at Cornell)

– MacArthur genius prize, Nevanlinna Prize and many other 
academic honors
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PageRank - Idea

Take into account directed graph structure of the web. Use 
hyperlink analysis to compute what pages are high quality or 
have high authority. Trust the internet itself define what is 
useful via its links.
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PageRank - Idea

Idea 1: think of each link as a citation “vote of quality”

Rank pages by in-degree?
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PageRank - Idea

Idea 1: think of each link as a citation “vote of quality”

Rank pages by in-degree?

Problems:

• Spamming

• Some linkers not discriminating

• Not all links created equal
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PageRank - Idea

Idea 2: perhaps we should weight the links somehow and then 
use the weights of the in-links to rank pages
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Inching towards Pagerank

Web page has high quality if it’s linked to by lots of high quality
pages.

A page is high quality if it links to lots of

high quality pages

recursive definition!
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Inching towards Pagerank

• If web page x has d outgoing links, one of which goes to y, 
this contributes 1/d to the importance of y.

• But we want to take into account the importance of x.
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Gives the following equations

Idea: Use the transition matrix defined by a random walk on the 
web 𝑷 to compute quality of webpages. Namely, find 𝒒 such that

𝒒𝑷 = 𝒒

Look familiar?

This is the stationary distribution for the Markov chain defined by a 
random surfer. Starts at some node (webpage) and randomly 
follows a link to another.

– Use stationary distribution of her surfing patterns after a long time as 
notion of quality
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Issues with PageRank

• How to handle dangling nodes (dead ends)? 

• How to handle Rank sinks – group of pages that only link to 
each other?

Both solutions can be solved by “teleportation”
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Final PageRank Algorithm

• Make a Markov Chain with one state for each webpage on the internet 

with the transition probabilities 𝑷𝑖𝑗 =
1

𝑜𝑢𝑡𝑑𝑒𝑔(𝑖)
.

• Use a modified random walk. At each point in time, if the surfer is at 
some webpage 𝑥.
– With probability 𝑝, take a step to one of the neighbors of 𝑥 (equally likely)

– With probability 1 − 𝑝, “teleport” to a uniformly random page in the whole 
internet.

• Compute stationary distribution 𝝅 of this perturbed Markov chain. 

• Define the PageRank of a webpage 𝑖 as the stationary probability 𝜋𝑖. 

• Find all pages with decent textual match to search and then order those 
pages by PageRank!
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PageRank - Example
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It Gets More Complicated

While this basic algorithm was the defining idea that launched 
Google on their path to success, this is far from the end to 
optimizing search.

Nowadays, Google has a LOT more secret sauce to ranking 
pages most of which they don’t reveal for 1) competitive 
advantage and 2) avoid gaming their algorithm.
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