CSE 312
 Foundations of Computing II

Lecture 23: Markov chains and Pagerank

w

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Anna Karlin, Ryan O’Donnell, Alex Tsun, Rachel Lin, Hunter

Schafer \& myself :

Agenda

- Markov Chains
- Stationary Distributions
- Example
- Application: PageRank

So far, a single-shot random process

So far, a single-shot random process

Random

Process \rightarrow| Outcome |
| :---: |
| Distribution |
| D |

Many-step random process

So far, a single-shot random process

Many-step random process

Definition: A discrete-time stochastic process (DTSP) is a sequence of random variables $X^{(0)}, X^{(1)}, X^{(2)}, \ldots$ where $X^{(t)}$ is the value at time t.

A day in my life (I wish)

$t=0$

Work

This type of probabilistic finite automaton is called a Markov Chain The next state depends only on the current state and not on the history

For ANY $t \geq 0$,
if I was working at time t, then at $t+1$ with probability 0.4 I continue working with probability 0.6 , I switch to surfing, and with probability 0 , I switch to emailing

This is called History Independent (similar to memoryless)

A day in my life (I wish) Many interesting questions. $q_{u}{ }^{\circ}$

1. What is the probability that I work at time 1?

$q^{(t)}=\left\{q_{\underline{w}}^{(1)}, q_{s^{(t)}}^{(t)} q_{(E)}^{t}\right)$

$$
q_{w}^{(t)}=\operatorname{Pr}\left(X^{(t)}=\text { work }\right)
$$

$$
q_{S}^{(t)}=\operatorname{Pr}\left(X^{(t)}=\text { surf }\right)
$$

$$
q_{E}^{(t)}=\operatorname{Pr}\left(X^{(t)}=\text { email }\right)
$$

0.4

1
0.1
2. What is the probability that I work at time 2?

$$
\mathbb{P}\left(X^{\prime}=\omega\right)=\mathbb{P}\left(x^{\prime}=\omega \mid X^{0}=w\right) \mathbb{P}\left(X^{\circ}=\omega\right)+\mathbb{P}\left(X^{\prime}=\omega \mid X^{0}=s\right) \mathbb{P}(X: s)
$$

A day in my life (I wish)

Many interesting questions

1. What is the probability that I work at time 1?
2. What is the probability that I work at time 2?
3. What is the probability that I work at time $t=100$?
4. What is the probability that I'm working at some random time far in the future?

A day in my life (I wish)

What is the probability l'm in each state at time t, as a function of the probability distribution over states at time t-1

$X^{(t)}$ state I'm in at time t (random variable)

Transition Probability Matrix

$$
\begin{aligned}
& \rightarrow \begin{array}{ccc}
w & S & E \\
\rightarrow & P_{i j}=\mathbb{P}\left(X^{i+1}=j \mid X^{t}-i\right)
\end{array} \\
& \vec{P}={ }_{s}^{w}\left(\begin{array}{ccc}
.4 & .6 & \frac{10}{10} \\
.1 & 6 & .3 \\
.5 & 0 & .5
\end{array}\right) P_{w s}=\mathbb{R}\left(X^{+n}=s \mid X^{t}=w\right) \\
& q_{w}^{2}=? \\
& q^{2}=q^{\prime} p \\
& \Rightarrow \boldsymbol{q}^{(t)}=\boldsymbol{q}^{(t-1)} \underline{\boldsymbol{P}} \quad \boldsymbol{q}^{(t)}=\left(q_{w}^{(t)}, \quad q_{S}^{(t)}, \quad q_{E}^{(t)}\right) \\
& 49
\end{aligned}
$$

Apply $\boldsymbol{q}^{(t)}=\boldsymbol{q}^{(t-1)} \boldsymbol{P}$ inductively.

$$
\boldsymbol{P}=\left(\begin{array}{ccc}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right)
$$

$$
q^{2}=q^{\prime} p:\left(q^{\circ} p\right) p
$$

$\Rightarrow \boldsymbol{q}^{(t)}=\boldsymbol{q}^{(0)} \boldsymbol{p}^{t}$

$$
\text { Recall } \boldsymbol{q}^{(t)} \frac{\boldsymbol{q}^{(0)} \boldsymbol{P}^{t}}{(1,0,0)} \quad \boldsymbol{P}=\left(\begin{array}{lll}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right)
$$

$$
\boldsymbol{R}^{-3}=\begin{gathered}
W \\
S \\
E
\end{gathered}\left(\begin{array}{ccc}
W & S & E \\
.238 & .492 & .270 \\
.307 & .402 & .291 \\
.335 & .450 & .215
\end{array}\right)
$$

$$
W \quad S \quad E
$$

$$
\boldsymbol{R}^{10} \approx \begin{aligned}
& W \\
& \\
& E
\end{aligned}\left(\begin{array}{lll}
.2940 & .4413 & .2648 \\
.2942 & .4411 & .2648 \\
.2942 & .4413 & .2648
\end{array}\right)
$$

$$
\boldsymbol{B}^{30} \approx \begin{gathered}
W \\
W \\
S \\
E
\end{gathered}\binom{.29411764705}{.29411764706} .44117647059
$$

$\boldsymbol{\rho}^{60} \approx \begin{aligned} & W \\ & E\end{aligned}\left(\begin{array}{llll}.294117647058823 & .441176470588235 & .264705882352941 \\ .294117647068823 & .441176470588235 & .264705882352941 \\ .294117647068823 & .441176470588235 & .264705882352941\end{array}\right)$

What does this say about $\boldsymbol{q}^{(t)}$?

Agenda

- Markov Chains
- Stationary Distributions
- Example
- Application: PageRank

$$
\begin{aligned}
q^{t-1} p & =q^{t} \\
q^{t} p & =q^{t}
\end{aligned}
$$

If $q^{(t)}=\underline{q}^{(t-1)}$ then it will never change again!

Called a "stationary distribution" and has a special name

$$
\boldsymbol{\pi}=\left(\pi_{W}, \pi_{S}, \pi_{E}\right)
$$

Solution to $\pi=\pi P$

$$
\left(\begin{array}{lll}
\pi_{w}, & \pi_{S}, & \pi_{E}
\end{array}\right)=\left(\begin{array}{lll}
\pi_{w}, & \pi_{S} & \pi_{E}
\end{array}\right)\left(\begin{array}{ccc}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right)
$$

Solving for Stationary Distribution

$$
\boldsymbol{P}=\left(\begin{array}{ccc}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Stationary Distribution satisfies } \\
& \begin{array}{l}
\text { - } \pi=\pi P, \text { where } \pi=\left(\pi_{W}, \pi_{S}, \pi_{E}\right) \\
-\pi_{W}+\pi_{S}+\pi_{E}=1 \\
\Rightarrow \pi_{W}=\frac{15^{\alpha}}{34}, \pi_{S}=\frac{10}{34}, \pi_{E}=\left(\frac{9}{34}\right)
\end{array}
\end{aligned}
$$

\rightarrow Ast $\rightarrow \infty, \quad \boldsymbol{q}^{(t)} \rightarrow \pi \quad!!$

Markov Chains in general

- A set of n states $\{1,2,3, \ldots n\}$
- The state at time t is denoted by $X^{(t)}$
- A transition matrix \mathbf{P}, dimension $n \times n$

$$
\boldsymbol{P}_{i j}=\operatorname{Pr}\left(X^{(t+1)}=j \mid \mathrm{X}^{(t)}=i\right)
$$

- $\boldsymbol{q}^{(t)}=\left(q_{1}^{(t)}, q_{2}^{(t)}, \ldots, q_{n}^{(t)}\right)$ where $q_{i}^{(t)}=\operatorname{Pr}\left(\mathrm{X}^{(t)}=i\right)$
- Transition: LTP $\rightarrow \boldsymbol{q}^{(t)}=\boldsymbol{q}^{(t-1)} \boldsymbol{P}=\Rightarrow \boldsymbol{q}^{(t)}=\boldsymbol{q}^{(0)} \boldsymbol{P}^{t}$
- A stationary distribution π is the solution to:

$$
\pi=\pi \boldsymbol{P}, \text { normalized so that } \Sigma_{i \in[n]} \pi_{i}=1
$$

The Fundamental Theorem of Markov Chain

If a Markov chain is "irreducible" and "aperiodic", then it has a
unique stationary distribution.
Moreover, as $t \rightarrow \infty$, for all $i, j, \quad P_{i j}^{t}=\pi_{j}$

Stationary Distribution of a Markov Chain

Definition. The stationary distribution of a Markov Chain with n states is the n-dimensional row vector π (which must be a probability distribution - nonnegative and sums to 1) such that

$$
\pi P=\pi
$$

Intuition: Distribution over states at next step is the same as the distribution over states at the current step

Stationary Distribution of a Markov Chain

Intuition: $q^{(t)}$ is the distribution of being at each state at time t computed by $\boldsymbol{q}^{(t)}=\boldsymbol{q}^{(0)} \boldsymbol{P}^{t}$. As t gets large $\boldsymbol{q}^{(t)} \approx \boldsymbol{q}^{(t+1)}$.

Theorem. The Fundamental Theorem of Markov Chains says that (under some minor technical conditions), for a Markov Chain with transition probabilities P and for any starting distribution $q^{(0)}$ over the states

$$
\lim _{t \rightarrow \infty} \boldsymbol{q}^{(0)} \boldsymbol{P}^{t}=\boldsymbol{\pi}
$$

where π is the stationary distribution of P (i.e., $\pi P=\pi$)

Agenda

- Markov Chains
- Stationary Distributions
- Example
- Application: PageRank

Another Example: Random Walks

Suppose we start at node 1, and at each step transition to a neighboring node with equal probability.

This is called a "random walk" on this graph.

Example: Random Walks

Start by defining transition probs.

ω^{-1}	ω^{N}	0^{m}	0^{\top}	0^{n}
\circ	\circ	\circ	\circ	\circ

From \mathbf{s}_{1}
From \mathbf{s}_{2}
From \mathbf{s}_{3}
From \mathbf{s}_{4}
From $\mathbf{s}_{5}$$\quad[\square]$

$$
\begin{aligned}
& P_{i j}=\operatorname{Pr}\left(X^{(t+1)}=j \mid X^{(t)}=i\right) \\
& q_{i}^{(t)}=\operatorname{Pr}\left(\mathrm{X}^{(t)}=i\right)=\left(q^{(0)} P^{t}\right)_{i}
\end{aligned}
$$

Example: Random Walks

Start by defining transition probs.

From $\mathbf{s}_{\mathbf{1}}$
From $\mathbf{s}_{\mathbf{2}}$
From $\mathbf{s}_{\mathbf{3}}$
From $\mathbf{s}_{\mathbf{4}}$
From $\mathbf{s}_{\mathbf{5}}$$\left[\begin{array}{ccccc}0 & 1 / 2 & 1 / 2 & 0 & 0 \\ 1 / 2 & 0 & 0 & 1 / 2 & 0 \\ 1 / 2 & 0 & 0 & 1 / 2 & 0 \\ 0 & 1 / 3 & 1 / 3 & 0 & 1 / 3 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$

$$
\begin{aligned}
& P_{i j}=\operatorname{Pr}\left(X^{(t+1)}=j \mid X^{(t)}=i\right) \\
& q_{i}^{(t)}=\operatorname{Pr}\left(\mathrm{X}^{(t)}=i\right)=\left(q^{(0)} P^{t}\right)_{i}
\end{aligned}
$$

Example: Random Walks

Suppose we know that $X^{(0)}=2$. What is $\operatorname{Pr}\left(X^{(2)}=3\right)$?

$\left[\begin{array}{ccccc}0 & 1 / 2 & 1 / 2 & 0 & 0 \\ 1 / 2 & 0 & 0 & 1 / 2 & 0 \\ 1 / 2 & 0 & 0 & 1 / 2 & 0 \\ 0 & 1 / 3 & 1 / 3 & 0 & 1 / 3 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$

Agenda

- Markov Chains
- Stationary Distributions
- Example
- Application: PageRank

PageRank: Some History

The year was 1997

- Bill Clinton in the White House
- Deep Blue beat world chess champion (Kasparov)

The internet was not like it was today. Finding stuff was hard! - In Nov 1997, only one of the top 4 search engines actually found itself when you searched for it

The Problem

Search engines worked by matching words in your queries to documents.

Not bad in theory, but in practice there are lots of documents that match a query.

- Search for Bill Clinton, top result is 'Bill Clinton Joke of the Day'
- Susceptible to spammers and advertisers

The Fix: Ranking Results

- Start by doing filtering to relevant documents (with decent textual match).
- Then rank the results based on some measure of 'quality' or 'authority'.

Key question: How to define 'quality' or 'authority'?

Enter two groups:

- Jon Kleinberg (professor at Cornell)
- Larry Page and Sergey Brin (Ph.D. students at Stanford)

Both groups had the same brilliant idea

Larry Page and Sergey Brin (Ph.D. students at Stanford)

- Took the idea and founded Google, making billions

Jon Kleinberg (professor at Cornell)

- MacArthur genius prize, Nevanlinna Prize and many other academic honors

PageRank - Idea

Take into account directed graph structure of the web. Use hyperlink analysis to compute what pages are high quality or have high authority. Trust the internet itself define what is useful via its links.

PageRank - Idea

Idea 1: think of each link as a citation "vote of quality"

Rank pages by in-degree?

PageRank - Idea

Idea 1: think of each link as a citation "vote of quality"

Rank pages by in-degree?

Problems:

- Spamming
- Some linkers not discriminating
- Not all links created equal

PageRank - Idea

Idea 2: perhaps we should weight the links somehow and then use the weights of the in-links to rank pages

Inching towards Pagerank

Web page has high quality if it's linked to by lots of high quality pages.

A page is high quality if it links to lots of high quality pages
recursive definition!

Inching towards Pagerank

- If web page x has d outgoing links, one of which goes to y, this contributes $1 / d$ to the importance of y.
- But we want to take into account the importance of x.

Gives the following equations

Idea: Use the transition matrix defined by a random walk on the web P to compute quality of webpages. Namely, find q such that

$$
q P=q
$$

Look familiar?

This is the stationary distribution for the Markov chain defined by a random surfer. Starts at some node (webpage) and randomly follows a link to another.

- Use stationary distribution of her surfing patterns after a long time as notion of quality

Issues with PageRank

- How to handle dangling nodes (dead ends)?
- How to handle Rank sinks - group of pages that only link to each other?

Both solutions can be solved by "teleportation"

Final PageRank Algorithm

- Make a Markov Chain with one state for each webpage on the internet with the transition probabilities $\boldsymbol{P}_{i j}=\frac{1}{\operatorname{outdeg}(i)}$.
- Use a modified random walk. At each point in time, if the surfer is at some webpage x.
- With probability p, take a step to one of the neighbors of x (equally likely)
- With probability $1-p$, "teleport" to a uniformly random page in the whole internet.
- Compute stationary distribution π of this perturbed Markov chain.
- Define the PageRank of a webpage i as the stationary probability π_{i}.
- Find all pages with decent textual match to search and then order those pages by PageRank!

PageRank - Example

It Gets More Complicated

While this basic algorithm was the defining idea that launched Google on their path to success, this is far from the end to optimizing search.

Nowadays, Google has a LOT more secret sauce to ranking pages most of which they don't reveal for 1) competitive advantage and 2) avoid gaming their algorithm.

