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If you flip a coin with unknown probability of heads X, what does your belief
distribution look like if:

e You didn't observe anything?

e You observed 8 heads and 2 tails?

e You observed 80 heads and 20 tails?
e You observed 2 heads and 3 tails?
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Beta RV: X~Beta(a, B), if and only if X has the following pdf:
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1
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THE BETA RANDOM VARTABLE

Beta RV: X~Beta(a, ), if and only if X has the following pdf:

x*1(1-x)p1, o0<x<1

1
fx(x) = {B(a,ﬂ)

0, otherwise

X is typically the belief distribution about some unknown probability of
success, where we pretend we saw a — 1 successes and 8 — 1 failures ahead

of time. Hence, the mode, arg max fx(2), is
xe|0,

delx] = a—1
modelX] = ¥ -1
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In maximum likelihood estimation, we use iid samples x = (x4, ..., x,,) from some
distribution with unknown parameter(s) 6, in order to estimate 6.
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Byp = arg meaxL(x | 9) = argmeaxl—[fx(xi; 9)
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me(6 | x) =
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MAXIMUM A POSTERIORT (MAP) ESTIMATION

Maximum A Posteriori (MAP) Estimation: Let x = (x4, ..., x,) be iid realizations from
probability mass function px(t; ® = 6) (if X discrete), or from density fx(t;0 = 0) (if X
continuous), where 0 is the random variable representing the parameter (or vector of
parameters). We define the maximum a posteriori (MAP) estimator 8, of © to be the
parameter which maximizes the posterior distribution of © given the data.

Byiap = ATE max e(0 | x) = arg meaxL(x | 0)e(0)
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{0.2,0.5,0.7} so that the MAP is 0.2, another so that it is 0.5, and another so
that it is 0.7.
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c. Assume O is restricted as in part b (now a random variable for MAP).
Suppose we have a (discrete) prior mg(0.2) = 0.1, 7g(0.5) = 0.01, and
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d. Show that we can make the MAP whatever we like, by finding a prior over
{0.2,0.5,0.7} so that the MAP is 0.2, another so that it is 0.5, and another so
that it is 0.7.

Choose mg(0) = 1 for the 6 you want.
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e. Typically, for the Bernoulli/Binomial distribution, we want to be able to get any value € (0,1),
(not just ones in a finite set such as {0.2,0.5,0.7}). So we assign ©@~Beta(a, ) with parameters
a,f > 0 and density n@(e) = B) ——0%1(1—0)P for 6 € (0,1). Recall the mode of a

W~Beta(a,B) rv is m (the value with highest density arg max fwr(wW)).
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Suppose x;, ..., x, are iid from a Bernoulli distribution with unknown parameter. Recall the
MLE is k/n, where k = Y x;. Show that the posterior g (0|x) is Beta(k + a,n — k + B), and
find the MAP. (Hint: use the mode given).
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e. Typically, for the Bernoulli/Binomial distribution, we want to be able to get any value € (0,1),
(not just ones in a finite set such as {0.2,0.5,0.7}). So we assign ©~Beta(a, ) with parameters
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Suppose x;, ..., x, are iid from a BernoullNdistribution with unknown parameter. Recall the
MLE is k/n, where k = Yx;. Show that the posterior ny(0|x) is Beta(k + a,n — k + B), and
find the MAP. (Hint: use the mode given).

e (0]x) < L(x|0)\gte(0)
n r 1 4 s
& ((k) o el k) | (B(a,ﬁ)9 ‘a-0r)




MAXIMUM A POSTERTORT (EXAMPLE)

e. Typically, for the Bernoulli/Binomial distribution, we want to be able to get any value € (0,1),
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a,f > 0 and density n@(e) = B) ——0%1(1—0)P for 6 € (0,1). Recall the mode of a
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Suppose x;, ..., x, are iid from a Bernoulli distribution with unknown parameter. Recall the
MLE is k/n, where k = Y x;. Show that the posterior g (0|x) is Beta(k + a,n — k + B), and
find the MAP. (Hint: use the mode given).
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Typically, for the Bernoulli/Binomial distribution, we want to be able to get any value € (0,1),
(not just ones in a finite set such as {0.2,0.5,0.7}). So we assign ©@~Beta(a, ) with parameters
a,f > 0 and density n@(e) = B( rernidl 1(1 —6)A~* for 6 € (0,1). Recall the mode of a

W~Beta(a,B) rv is m (the value with highest density arg max fwr(wW)).

Suppose x;, ..., x, are iid from a Bernoulli distribution with unknown parameter. Recall the
MLE is k/n, where k = Yx;. Show that the posterior mg(0|x) is Beta(k + a,n — k + ), and
find the MAP. (Hint: use the mode given).
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Hence our posterior is Beta(k + a,n — k + ). The mode of this beta is given:
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Typically, for the Bernoulli/Binomial distribution, we want to be able to get any value € (0,1),
(not just ones in a finite set such as {0.2,0.5,0.7}). So we assign ©@~Beta(a, ) with parameters
a,f > 0 and density n@(e) = B( rernidl 1(1 —6)A~* for 6 € (0,1). Recall the mode of a

W~Beta(a,B) rv is m (the value with highest density arg max fwr(wW)).

Suppose x;, ..., x, are iid from a Bernoulli distribution with unknown parameter. Recall the
MLE is k/n, where k = Yx;. Show that the posterior mg(0|x) is Beta(k + a,n — k + ), and
find the MAP. (Hint: use the mode given).

g (0lx) < L(x10) - mg(0)

n 1
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_((k)eka ) k) (B( ok i 5 1)
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Hence our posterior is Beta(k + a,n — k + B). The mode of this beta is given:
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the Bernoulli/Binomial distribution. Interpret a,f.



MAXIMUM A POSTERTORT (EXAMPLE)

f. Notice that Beta(1,1) = Unif(0,1). If we used this as the prior, how would the MLE
and MAP compare?

From previous slide, if a = = 1, then our MAP estimate is the same as our ML estimate!

it TRUE HEADS P kt@-1) _k_,
MAP " n+(@-1)+@B-1) n ME

g. Since the posterior is also a Betadistribution, we call Beta the conjugate prior to
the Bernoulli/Binomial distribution. Inte

if TRUE TRIALS




MAXIMUM A POSTERTORT (EXAMPLE)

f. Notice that Beta(1,1) = Unif(0,1). If we used this as the prior, how would the MLE

and MAP compare? #EAKE HEADS
From previous slide, if @ = B = 1, then our MAP eWe as our ML estimate!
it TRUE HEADS P kt@-1) _k_,
MAP " n+(@-1)+@B-1) n ME

g. Since the posterior is also a Betadistribution, we call Beta the conjugate prior to
the Bernoulli/Binomial distribution. Inte

if TRUE TRIALS




MAXIMUM A POSTERTORT (EXAMPLE)

f. Notice that Beta(1,1) = Unif(0,1). If we used this as the prior, how would the MLE

and MAP compare? #EAKE HEADS
From previous slide, if «a = g = 1, then our MAP eWa as our ML estimate!
# TRUE HEADS > k+@-1) _k_
MAP " n+(@-1)+@B-1) n ME

g. Since the posterior is also a Betadistri eta the conjugate prior to

# TRUE TRIALS #EAKE TRTALS



MAXIMUM A POSTERTORT (EXAMPLE)

f. Notice that Beta(1,1) = Unif (0,1). If we used this as the prior, how would the MLE
and MAP compare?

From previous slide, if a = = 1, then our MAP estimate is the same as our ML estimate!
5. _ k+(@a—1) k- 5
MAP “n+(@-1)+@B-1) n ME

g. Since the posterior is also a Beta distribution, we call Beta the conjugate prior to
the Bernoulli/Binomial distribution. Interpret a,f.

It means: pretend we saw a — 1 heads ahead of time, and B — 1 tails ahead of time. Then
our total heads is k + @ — 1 and our total trialsisn+ a + g — 2.
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f. Notice that Beta(1,1) = Unif(0,1). If we used this as the prior, how would the MLE
and MAP compare?

From previous slide, if a = = 1, then our MAP estimate is the same as our ML estimate!
5 B k+(a—-1) B k _5
MAP “n+(@-1)+@B-1) n ME

g. Since the posterior is also a Beta distribution, we call Beta the conjugate prior to
the Bernoulli/Binomial distribution. Interpret a,f.

It means: pretend we saw a — 1 heads ahead of time, and B — 1 tails ahead of time. Then
our total heads is k + @ — 1 and our total trialsisn+ a + g — 2.

e (0lx) x L(x|0) - mg(0)

“LUcky” Us!! o gUcra)-1(1 _ g)(n—k+p)-1

“Lucky” Us!!
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value with the highest probability or density. An example would be estimating the probability of heads
of a coin - is it reasonable to assume it is more likely fair than not? If so, what distribution should we
put on the parameter space?
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h. As the number of samples goes to infinity, what is the relationship between the

MLE and MAP? What does this say about our prior when n is small, or n is large?

They become equal! The prior is important if we don't have much data, but as we get more,
the evidence overwhelms the prior.

Which do you think is "better”, MLE or MAP?

There is no right answer. There are two main schools in statistics: Bayesians and Frequentists.
Frequentists prefer MLE since they don't believe you should be putting a prior belief on anything, and
you should only make judgment based on what you've seen. They believe the parameter being
estimated is a fixed quantity.

On the other hand, Bayesians prefer MAP, since they can incorporate their prior knowledge into the
estimation. Hence the parameter being estimated is a random variable, and we seek the mode - the
value with the highest probability or density. An example would be estimating the probability of heads
of a coin - is it reasonable to assume it is more likely fair than not? If so, what distribution should we
put on the parameter space?

Anyway, in the long run, the prior * * washes out", and the only thing that matters is the likelihood; the
observed data. For small sample sizes like this, the prior significantly influences the MAP estimate.
However, as the number of samples goes to infinity, the MAP and MLE are equal.



