CSE 312 Foundations of Computing II

Lecture 19: Maximum Likelihood Estimation

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Final Pset

- Slightly longer, slightly harder, less time to work
- Released Tuesday, August 16th at 11:59pm PST
- Due Friday, August 19th at 11:59pm PST
 - No late days can be spent!
 - If something comes up, please let me know as soon as possible
- Individual, but working and studying together is encouraged
 - No office hours during this time
 - Prepare and go to office hours ahead of time
 - There will be a form to find classmates to work with as needed
 - Remember that you do not need to typeset if that will take up too much time
- TA-led review session, in-class review, TBA

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation
- MLE with continuous random variables
- General Steps

Probability vs statistics

Probability vs statistics

Probability: Viewpoint up to Now

 $\theta = \underline{known}$ parameter

 θ tells us how samples are distributed. $\mathbb{P}(x; \theta)$ viewed as a function of x (fixed θ)

Statistics: Parameter Estimation – Workflow

Example

NBe (0)

Suppose we have a mystery coin with some probability if of coming up heads. We flip the coin 8 times, independent of other flips and see the following sequence. of flips

TTHTHTTH

Given this data,	, what would you	estimate <i>p</i> is?
------------------	------------------	-----------------------

Ро	ll:				
а.	1/2				
<i>b.</i>	5/8				
С.	3/8				
<i>d.</i>	1/4				

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation

- MLE with continuous random variables
- General Steps

Likelihood

Say we see outcome HHTHH.

You tell me your best guess about the value of the unknown parameter θ (aka p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

Likelihood

Max Prob of seeing HHTHH

Say we see outcome HHTHH.

You tell me your best guess about the value of the unknown parameter θ (aka p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

$$\mathcal{L}(HHTHH \mid \theta) = \theta^{4}(1-\theta)$$

Likelihood of Different Observations (Discrete case) $\int_{L} \int_{L} \int_{L$

 $= \mathcal{P}(X, 10) \cdot \mathcal{P}(X, i0) \cdot \dots \cdot \mathcal{P}(X, i0)$

(Discrete case)

Definition. The **likelihood** of independent observations x_1, \dots, x_n is $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n \mathbb{P}(x_i; \theta)$

Maximum Likelihood Estimation (MLE). Given data $x_1, ..., x_n$, find $\hat{\theta}$ ("the MLE") of model such that $L(x_1, ..., x_n | \hat{\theta})$ is maximized! $\hat{\theta} = \operatorname*{argmax}_{\theta} \mathcal{L}(x_1, ..., x_n | \theta)$

Likelihood vs. Probability

A **probability function** $Pr(x; \theta)$ is a function with input being an event x for some fixed probability model (w/ param θ).

 $\sum_{x} \Pr(x; \theta) = 1$

A likelihood function $\mathcal{L}(x | \theta)$ is a function with input being θ (the param of the prob. Model) for some fixed dataset x.

These notions are very closely connected, but answer different questions. We are trying to find the θ that maximizes likelihood, thus we are looking for the **maximum likelihood estimator**.

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails $- \text{l.e.}, n_H + n_T = n$ **Goal:** estimate θ = prob. heads. $L(x_1, ..., x_n | \theta) = \theta^{n_H} (1 - \theta)^{n_T}$ $= \int_{i=1}^{n_H} \mathbb{P}(x_i; \theta) = \int_{i=1}^{n_H} \mathbb{P}(x_i; \theta)$

While it is not difficult to compute this derivative, we make our lives easier by observing that we are always taking a derivative of a product....

Log-Likelihood

We can save some work if we work with the **log-likelihood** instead of the likelihood directly.

a > b (n(a) > b (b)

Definition. The **log-likelihood** of independent observations x_1, \dots, x_n is $\mathcal{LL}(x_1, \dots, x_n | \theta) = \ln \mathcal{L}(x_1, \dots, x_n | \theta)$ $= \ln \prod_{i=1}^n \mathbb{P}(x_i; \theta) = \sum_{i=1}^n \ln \mathbb{P}(x_i; \theta)$

Useful log properties

$$\log(ab) = \log(a) + \log(b) \\ \log(a/b) = \log(a) - \log(b) \\ \log(a^b) = blog(a)$$

Example – Coin Flips $l_{n}(a') = 5l_{n}(a)$ KILT LIK ln: loge Observe: Coin-flip outcomes x_1, \dots, x_n , with n_H heads, n_T tails $-1.e., n_H + n_T = n$ **Goal:** estimate θ = prob. heads. $\frac{n_{+1}}{\tilde{\Theta}} - \frac{n_{-1}}{1 - \tilde{\Theta}} = 0$ $\mathcal{L}(x_1,\ldots,x_n|\theta) = \underline{\theta}^{n_H}(1-\theta)^{n_T}$ $\frac{r_{H}}{2} = \hat{\Theta}$ $\ln \mathcal{L}(x_1, \dots, x_n | \theta) = \mathcal{L}(\theta'') + \mathcal{L}(((-\theta))')$ $\frac{n_{r'}}{n_{r'}} \sim \frac{n_{r'}}{n_{r'}}$ = n, ln (0) + n- ln (1.0) $n_{\rm FI}(1-\hat{\Theta}) = n_{\rm T}\hat{\Theta}$ $\frac{\partial}{\partial \theta} \mathcal{L}((X_{1},..,Y_{n}|\theta)) = \frac{n_{H}}{\theta} - \frac{n_{T}}{1-\theta}$ $\Lambda_{FI} - \Lambda_T \tilde{\Theta}$ $U^{+1} = (V^{\perp} \rightarrow V^{\perp}) \stackrel{\sim}{\Theta}$

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - I.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

$$\mathcal{L}(x_1,\ldots,x_n|\theta) = \theta^{n_H}(1-\theta)^{n_T}$$

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) = n_H \ln \theta + n_T \ln(1 - \theta)$$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta) = n_H \cdot \frac{1}{\theta} - n_T \cdot \frac{1}{1 - \theta}$$

Solve $n_H \cdot \frac{1}{\theta} - n_T \cdot \frac{1}{1 - \theta} = 0$ -----

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation
- MLE with continuous random variables
- General Steps

The Continuous Case

Given *n* samples $x_1, ..., x_n$ from a Gaussian $\mathcal{N}(\mu, \sigma^2)$, estimate $\theta = (\mu, \sigma^2)$

Why density?

- Density ≠ probability, but:
 - For maximizing likelihood, we really only care about relative likelihoods, and density captures that
 - has desired property that likelihood increases with better fit to the model

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely</u> μ ? [i.e., we are given the <u>promise</u> that the variance is one]

n samples $x_1, \ldots, x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

23

n samples $x_1, \ldots, x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

24

Normal outcomes x_1, \dots, x_n , known variance $\sigma^2 = 1$

Goal: estimate θ expectation

$$log(ab) = log(a) + log(b)$$

$$log(a/b) = log(a) - log(b)$$

$$log(ab) = blog(a) 25$$

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

Goal: estimate θ expectation

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \theta)^2}{2}} = \left(\frac{1}{\sqrt{2\pi}}\right)^n \prod_{i=1}^n e^{-\frac{(x_i - \theta)^2}{2}}$$
$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

Goal: estimate θ = expectation

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

Goal: estimate θ = expectation

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

lote: $\frac{\partial}{\partial \theta} \frac{(x_i - \theta)^2}{2} = \frac{1}{2} \cdot 2 \cdot (x_i - \theta) \cdot (-1) = \theta - x_i$
 $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta) = \sum_{i=1}^n (x_i - \theta) = \sum_{i=1}^n x_i - n\theta = 0$

$\hat{ heta} =$	$\sum_{i}^{n} x_{i}$
	\overline{n}

In other words, MLE is the sample mean of the data.

Next steps: *n* samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, \sigma^2)$. Most likely μ and σ^2 ?

29

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation
- MLE with continuous random variables
- General Steps 🗨

General Recipe

1. Input Given *n* iid samples $x_1, ..., x_n$ from parametric model with parameters θ .

- 2. Likelihood Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n \Pr(x_i; \theta)$
 - For continuous $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. Log Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

0