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Final Pset

 Slightly longer, slightly harder, less time to work
* Released Tuesday, August 16t" at 11:59pm PST
 Due Friday, August 19t" at 11:59pm PST
* No late days can be spent!
* If something comes up, please let me know as soon as possible
* Individual, but working and studying together is encouraged
* No office hours during this time
* Prepare and go to office hours ahead of time
* There will be a form to find classmates to work with as needed
 Remember that you do not need to typeset if that will take up too
much time
* TA-led review session, in-class review, TBA



Agenda

* |dea: Estimation @

 Maximum Likelihood Estimation

* MLE with continuous random variables
* General Steps



Probability vs statistics

Probability

Ber(p = 05) ——>| sgiven model, predict |:>P(THHTHH)

data




Probability vs statistics

Probability

Ber(p = 05) ——>| sgiven model, predict |:>P(THHTHH)

data

Statistics

Be’r(p —W 7) G given data, predict {——= THHTHH

model




Probability: Viewpoint up to Now

Distribution
P(x; 0)

6 = known parameter

Independent

> samples x4, ..., x,

from P(x;0)

0 tells us how samples are distributed.
P(x ; 8) viewed as a function of x (fixed 0)



Statistics: Parameter Estimation — Workflow

Distribution

P(x; 0)

6 = unknown parameter

Independent

> samples x4, ..., X,

from P(x; 0)

* Algorithm

Parameter

estimate

—

Don’t know how samples are distributed.

@/
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Example ABe (6)

Suppose we have a mystery coin with some probability(z of coming up heads. We
flip the coin 8 times, independent of other flips and see the following sequence. of
flips

TTHTHTTH
j vy _(:{—

Given this data, what would you estimate p |s7 '
........................................................................................ S 3
Poll: L

a 1/2 T

b 5§8 "" -83

c. 3/8

________________________________________________________________________________________



Agenda

* |dea: Estimation

 Maximum Likelihood Estimation -
* MLE with continuous random variables
* General Steps



Likelihood

Say we see outcome HHTHH.

You tell me your best guess
about the value of the unknown
parameter 6 (akap)is 4/5. Is
there some way that you can
argue “objectively’” that this is
the best estimate?
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Likelihood L(X)6) Max Prob of seeing HHTHH

1
Say we see outcome HHTHH.
—
You tell me your best guess
about the value of the unknown
parameter 6 (aka p)is 4/5. Is 003
there some way that you can
argue “objectively’” that this is
the best estimate? v

L(HHTHH | 6) =@9(1 - 6)

©'0-(1-9) .0®
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Likelihood of Different Observations (Discrete case)

___________________________________________________________________________________________________________________________________________________________________
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Likelihood of Different Observations (Discrete case)

___________________________________________________________________________________________________________________________________________________________________

Definition. The likelihood of independent observations x4, ...., x,, is
| n

L(X1, .., X,|0) = 1_[ P(x;; 0

=1

~ Maximum Likelihood Estimation (MLE). Given data x, ..., Xy, find
6 (“the MLE”) of model such that L(x, ...., x,|6) is maximized!
: 0 = argmax L(xq, ..., x,|0)

___________________________________________________________________________________________________________________________________________________________________
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Likelihood vs. Probability

A probability function Pr(x ; ) is a function with input being an
event x for some fixed probability model (w/ param 8).

ZPr(x;H)zl

A likelihood function L(x |6) is a function with input being 6 (the
param of the prob. Model) for some fixed dataset x.

These notions are very closely connected, but answer different
questions. We are trying to find the 6 that maximizes likelihood,
thus we are looking for the maximum likelihood estimator.
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Example - Coin Flips

Observe: Coin-flip outcomes x4, ..., x,,, with ny heads, n; tails
- Ed

—le,ng +nr=n Goal: estimate 6 = prob. heads.

Al N
L(xl,....,anG) = 088 (1 — 6)L ‘ P’ﬁ'(fﬁ?”m ’_m--:'- G - ((,9)

— i X

59 L(xq, .., x,|0) =727

While it is not difficult to compute this derivative, we make our
lives easier by observing that we are always taking a derivative
of a product.... 15



2 NSE
Log-Likelihood i r ) > L ()

We can save some work if we work with the log-likelihood instead of the
likelihood directly.

 Definition. The log-likelihood of independent observations
Xq, e, X IS
' LL(Xq, ooy X |0) = In L(xq, ..., x,|0)

n n

= In 1_[ P(x;;0) = Z In P(x;;0)
i=1 =1

__________________________________________________________________________________________________________________________________________________________

Useful log properties
7 log(ab) = log(a) + log(b) *
log(a/b) = log(a) —log(b)
log(a?) = blog(a)

_________
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Example - Coin Flips L(a7) = SL()

Ln = log,

/"’l ).—f'T I-IH

Observe: Coin-flip outcomes x4, ..., x,,, with ny heads, n; tails

—le,ny +nr=n

£(X1, .,xn|9) — Qf’i‘l(l _ H)nir

In L(x4, ....,%,|0) =.L~(9p“) y fnm’e\‘h)
: nr,,&(e) JA-TA/I-Q)

S

D) C X v \ N Ny
— Fy % = — = =
Jex' ( ’ , 6 I- ©

Goal: estimate 6 = prob. heads.

—Il—‘:'-—,ol: 6 I‘H_é
© -6 a B
Ny . N4
? -©
nﬂ("é):n-r’é
/\rl-n-[‘é\

N ~ (0 "/‘...)g
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Example - Coin Flips

Observe: Coin-flip outcomes x4, ..., x,,, with ny heads, n; tails
—le,ny +nr=n

L(xyg, ., X,]0) = O7H(1 — @)

In L(x1, ..., x,|0) =nyInb +n;In(1 — 6)

1 1
lnL(xl,....,xn|9) :nH'E_nT' P |

20

__________________________________

1
SOlvenH 5 nT’_:O

Goal: estimate 6 = prob. heads.
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Agenda

ldea: Estimation

Maximum Likelihood Estimation

MLE with continuous random variables @
General Steps
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The Continuous Case

Given n samples x4, ..., x,, from a Gaussian V' (u, 0%), estimate
0 = (u,0°)

___________________________________________________________________________________________________________________________________________________________________

Density function! (Why?)
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Why density?

* Density # probability, but:

— For maximizing likelihood, we really only care about relative
likelihoods, and density captures that

— has desired property that likelihood increases with better fit to the
model
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n samples x4, ..., x,, € R from Gaussian NV (i, 1). Most likely u?

[i.e., we are given the promise that the variance is one]
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n samples x4, ..., x,, € R from Gaussian NV (i, 1). Most likely u?

u=0°7?

Unlikely ...
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n samples x4, ..., x,, € R from Gaussian NV (i, 1). Most likely u?

u=37?

Better, but
optimal?
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Example - Gaussian Parameters

Normal outcomes x4, ..., x,,, known variance ¢* = 1

Goal: estimate 6 expectation

L(xq, ...

. Xn|6)

log(ab) = log(a) + log(b)
log(a/b) = log(a) —log(b)
log(ab) = blog(a)
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Example - Gaussian Parameters

Normal outcomes x4, ..., X,;, kKnown variance o

Goal: estimate 6 expectation

L(X1, .., x,]0) = 1_[ - 9)2 = (\/%)nﬁe_

—

In2r  ~o (x; — 6)2

InL(xq,....,x,|0) =—n
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Example — Gaussian Parameters Goal: estimate 0= expectation

Normal outcomes x4, ..., x,,, known variance 6% = 1

In 21 & (x; — 0)?
2 2 .2
1=
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Example — Gaussian Parameters Goal: estimate 0= expectation

Normal outcomes x4, ..., x,,, known variance 6% = 1

In2r < (x; — 0)?
In L(x1, ..., x,]|0) = —n —Z l

2 — 2
Note: 669@= £ 7 (x; —0)-(—1) =0 —x;
n
d
091n£(x1' e, Xn|0) = Z(xl —0) = le —nb =0
i=1

> x; In other words, MLE is the
- J sample mean of the data.
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Next steps: n samples x4, ..., x,, € R from Gaussian V' (i, 02). Most likely u
and 0 2?

0.5

-4 -3 -2 -1 0 1 2 3 4 5 6
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Agenda

ldea: Estimation

Maximum Likelihood Estimation

MLE with continuous random variables
General Steps @
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General Recipe /’/ w

1. Input Given n iid samples x4, ..., x,, from parametric model with
parameters 6. L(;p?\

2. Likelihood Define your likelihood L(x4, ...., x,,|60).
— For discrete  L(xy,....,x,]0) = [}, Pr(x; ; 8)
— For continuous L(xy, ....,x,]0) = [IiL, f(x;;0)

3. Log Compute In L(x4, ....,x,|0) S

4. Differentiate Compute % In L(xq, ..., %,|0)
5. Solve for O by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a
maximum, but we won’t ask you to do that in CSE 312.
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