CSE 312
 Foundations of Computing II

Lecture 19: Maximum Likelihood Estimation

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Final Pset

- Slightly longer, slightly harder, less time to work
- Released Tuesday, August $16^{\text {th }}$ at 11:59pm PST
- Due Friday, August 19 ${ }^{\text {th }}$ at 11:59pm PST
- No late days can be spent!
- If something comes up, please let me know as soon as possible
- Individual, but working and studying together is encouraged
- No office hours during this time
- Prepare and go to office hours ahead of time
- There will be a form to find classmates to work with as needed
- Remember that you do not need to typeset if that will take up too much time
- TA-led review session, in-class review, TBA

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation
- MLE with continuous random variables
- General Steps

Probability vs statistics

Probability vs statistics

$$
\operatorname{Ber}(p=? ? ?)
$$

Statistics

given data, predict model

Probability: Viewpoint up to Now

$\theta=$ known parameter
θ tells us how samples are distributed.
$\mathbb{P}(x ; \theta)$ viewed as a function of $x($ fixed $\theta)$

Statistics: Parameter Estimation - Workflow

Example

$\sim \operatorname{Be}(\theta)$

Suppose we have a mystery coin with some probability(f) of coming up heads. We flip the coin 8 times, independent of other flips and see the following sequence. of flips

TTHTHTTH
Given this data, what would you estimate p is?
\(\left.\begin{array}{llll}Poll: \& \frac{3}{8} \& vs. \frac{4}{8}

\begin{array}{lll}a. 1 / 2 \& \&

b. 5 / 8 \& \&

c. 3 / 8 \& \&

d. 1 / 4 \& \&

\hline\end{array}\end{array}\right) .\)	$\frac{5}{8}$

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation
- MLE with continuous random variables
- General Steps

Likelihood

Say we see outcome HHTHH.

You tell me your best guess about the value of the unknown parameter θ (aka p) is $4 / 5$. Is there some way that you can argue "objectively" that this is the best estimate?

Likelihood

$x_{1} y_{2} y_{3}$
Say we see outcome HHTHH.
You tell me your best guess about the value of the unknown parameter θ (aka p) is $4 / 5$. Is there some way that you can argue "objectively" that this is the best estimate?
$\mathcal{L}($ HHTHH $\mid \theta)=\theta(1-\theta)$

$$
\theta \cdot \theta \cdot(1-\theta) \cdot \theta \cdot \theta
$$

Likelihood of Different Observations

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\begin{aligned}
\underline{L\left(x_{1}, \ldots, x_{n} \mid \theta\right)} & =\prod_{i=1}^{n} \mathbb{P}\left(x_{i} ; \theta\right) \\
& =\mathbb{T}\left(x_{1}, \theta\right) \cdot \mathbb{P}\left(x_{2} ; \theta\right) \cdots \cdot \vec{R}\left(x_{1} ; \theta\right)
\end{aligned}
$$

Likelihood of Different Observations

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \frac{\mathbb{P}\left(x_{i} ; \theta\right)}{\longleftrightarrow}
$$

Maximum Likelihood Estimation (MLE). Given data x_{1}, \ldots, x_{n}, find $\hat{\theta}$ ("the MLE") of model such that $L\left(x_{1}, \ldots, x_{n} \mid \hat{\theta}\right)$ is maximized!

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

Likelihood vs. Probability

A probability function $\operatorname{Pr}(x ; \theta)$ is a function with input being an event x for some fixed probability model (w/ param θ).

$$
\sum_{x} \operatorname{Pr}(x ; \theta)=1
$$

A likelihood function $\mathcal{L}(x \mid \theta)$ is a function with input being θ (the param of the prob. Model) for some fixed dataset x.

These notions are very closely connected, but answer different questions. We are trying to find the θ that maximizes likelihood, thus we are looking for the maximum likelihood estimator.

Example - Coin Flips

Observe: Coin-flip outcomes x_{1}, \ldots, x_{n}, with $\frac{n_{H}}{z}$ heads, n_{T} tails

- l.e., $n_{H}+n_{T}=n$
$L\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta \underline{n_{H}}(1-\theta) \underline{n}_{\underline{n_{T}}}$
$\frac{\partial}{\partial \theta} L\left(x_{1}, \ldots ., x_{n} \mid \theta\right)=? ? ?$

Goal: estimate $\theta=$ prob. heads. $=\prod_{i=1}^{n} \mathbb{P}\left(\frac{x_{i} i \theta}{3}\right)=\prod_{i=1}^{n}=$

While it is not difficult to compute this derivative, we make our lives easier by observing that we are always taking a derivative of a product... .

Log-Likelihood

We can save some work if we work with the log-likelihood instead of the likelihood directly.

Definition. The log-likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\begin{aligned}
& \mathcal{L} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right) \\
& =\ln \prod_{i=1}^{n} \mathbb{P}\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \ln \mathbb{P}\left(x_{i} ; \theta\right)
\end{aligned}
$$

Useful log properties

$$
\begin{gathered}
\log (a b)=\log (a)+\log (b)^{\star} \\
\log (a / b)=\log (a)-\log (b) \\
\log \left(a^{b}\right)=b \log (a)
\end{gathered}
$$

Example - Coin Flips

$$
\ln \left(a^{b}\right)=b \ln (a)
$$

HITTH゙N
Observe: Coin-flip outcomes $\ln : \log _{e}, \ldots, x_{n}$, with n_{H} heads, n_{T} tails

$$
\begin{aligned}
& - \text { Ide., } n_{H}+n_{T}=n \\
& \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\underline{\theta^{n_{H}}} \underline{(1-\theta)^{n_{T}}} \\
& \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\ln \left(\theta^{n_{1+1}}\right)+\ln \left((1-\theta)^{n_{T}}\right) \\
& =n_{r 1} \ln (\theta)+n_{T} \ln (1 \cdot \theta) \\
& \frac{\partial}{\partial \theta} \operatorname{ll} L\left(x_{1} \ldots x_{n} \mid \theta\right)=\frac{n_{H}}{\theta}-\frac{n_{T}}{1-\theta} \\
& \frac{n_{H}}{\hat{\theta}}-\frac{n_{T}}{1-\hat{\theta}}=0 \quad \frac{n_{H}}{n}=\hat{\theta} \\
& \frac{n_{r_{1}}}{\hat{\theta}}=\frac{n_{T}}{1-\hat{\theta}} \\
& n_{r-1}(1-\hat{\theta})=n_{T} \hat{\theta} \\
& n_{r 1}-n_{7} \hat{\theta} \\
& n_{H}=\left(n_{T} \perp n_{H}\right) \hat{\theta}
\end{aligned}
$$

Example - Coin Flips

Observe: Coin-flip outcomes x_{1}, \ldots, x_{n}, with n_{H} heads, n_{T} tails

$$
- \text { І.е., } n_{H}+n_{T}=n
$$

Goal: estimate $\theta=$ prob. heads.
$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
$\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=n_{H} \ln \theta+n_{T} \ln (1-\theta)$
$\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=n_{H} \cdot \frac{1}{\theta}-n_{T} \cdot \frac{1}{1-\theta}$

$$
\hat{\theta}=\frac{n_{H}}{n}
$$

Solve $n_{H} \cdot \frac{1}{\hat{\theta}}-n_{T} \cdot \frac{1}{1-\widehat{\theta}}=0$

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation
- MLE with continuous random variables
- General Steps

The Continuous Case

Given n samples x_{1}, \ldots, x_{n} from a Gaussian $\mathcal{N}\left(\mu, \sigma^{2}\right)$, estimate $\theta=\left(\mu, \sigma^{2}\right)$

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

Why density?

- Density \neq probability, but:
- For maximizing likelihood, we really only care about relative likelihoods, and density captures that
- has desired property that likelihood increases with better fit to the model
n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ? [i.e., we are given the promise that the variance is one]

n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

Example - Gaussian Parameters

Normal outcomes x_{1}, \ldots, x_{n}, known variance $\sigma^{2}=1$
Goal: estimate θ expectation
$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{\pi} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\downarrow\left(x_{i}-\theta\right)^{2}}{2}}$

$$
\begin{gathered}
\log (a b)=\log (a)+\log (b) \\
\log (a / b)=\log (a)-\log (b) \\
\log \left(a^{b}\right)=b \log (a)
\end{gathered}
$$

Example - Gaussian Parameters

Normal outcomes x_{1}, \ldots, x_{n}, known variance $\sigma^{2}=1$
Goal: estimate θ expectation
$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\left(x_{i}-\theta\right)^{2}}{2}}=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \prod_{i=1}^{n} e^{-\frac{\left(x_{i}-\theta\right)^{2}}{2}}$
$\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=-n \frac{\ln 2 \pi}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta\right)^{2}}{2}$

Example - Gaussian Parameters

Goal: estimate $\theta=$ expectation
Normal outcomes x_{1}, \ldots, x_{n}, known variance $\sigma^{2}=1$

$$
\ln \mathcal{L}\left(x_{1}, \ldots ., x_{n} \mid \theta\right)=-n \frac{\ln 2 \pi}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta\right)^{2}}{2}
$$

Example - Gaussian Parameters

Goal: estimate $\theta=$ expectation
Normal outcomes x_{1}, \ldots, x_{n}, known variance $\sigma^{2}=1$

Note: $\frac{\partial\left(x_{i}-\theta\right)^{2}}{\partial \theta} \frac{2}{2}=\frac{1}{2} \cdot 2 \cdot\left(x_{i}-\theta\right) \cdot(-1)=\theta-x_{i}$

$$
\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\sum_{i=1}^{n}\left(x_{i}-\theta\right)=\sum_{i=1}^{n} x_{i}-n \theta=0
$$

$$
\hat{\theta}=\frac{\sum_{i}^{n} x_{i}}{n}
$$

Next steps: n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Most likely μ and σ^{2} ?

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation
- MLE with continuous random variables
- General Steps

General Recipe

1. Input Given n iid samples x_{1}, \ldots, x_{n} from parametric model with parameters θ.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(x_{i} ; \theta\right)$
- For continuous $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$

3. Log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

