CSE 312
 Foundations of Computing II

Lecture 18: The Central Limit Theorem

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Agenda

- Practice with Normals
- Closure of the Normal
- The Central Limit Theorem (CLT)

$\operatorname{Let} X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) . E[X]=\mu, V_{\omega}(X)=\sigma^{2}$

$$
\begin{aligned}
& \mathbb{P}\left(|x-\mu|<\frac{k \sigma}{\phi}\right)=\mathbb{P}\left(\frac{|x-\mu|}{\sigma}<k\right) \quad \frac{x-\mu}{\sigma} \\
&\left.=\mathbb{P}\left(-k<\frac{x-\mu}{\sigma}\right)<k\right)=\phi(k)-\phi(-k) \\
&= \phi(k)-(1-\phi(k)) \\
& 2 \phi(k)-1
\end{aligned}
$$

Example - Off by Standard Deviations

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\begin{aligned}
& \mathbb{P}(|X-\mu|<k \sigma)=\mathbb{P}\left(\frac{|X-\mu|}{\sigma}<k\right)= \\
&=\mathbb{P}\left(-k<\frac{X-\mu}{\sigma}<k\right)=\Phi(k)-\Phi(-k) \\
& 6 \% \%
\end{aligned}
$$

e.g. $k=1: 68 \%, k=2: 95 \%, k=3: 99 \%$

Summary of procedure for doing calculations with normal r.v.
If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$

Therefore,

$$
F_{X}(z)=\mathbb{P}(X \leq z)=\mathbb{P}\left(\frac{X-\mu}{\sigma} \leq \frac{z-\mu}{\sigma}\right)=\Phi\left(\frac{z-\mu}{\sigma}\right)
$$

Agenda

- Practice with Normals
- Closure of the Normal
- The Central Limit Theorem (CLT)

CDF of normal distribution

Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Y=a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$

Standard (unit) normal $Z \sim \mathcal{N}(0,1)$
CDF. $\Phi(z)=\mathbb{P}(Z \leq z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{Z} e^{-x^{2} / 2} \mathrm{~d} x$ for $Z \sim \mathcal{N}(0,1)$
Note: $\Phi(z)$ has no closed form - generally given via tables

If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $F_{X}(z)=\mathbb{P}(X \leq z)=\mathbb{P}\left(\frac{X-\mu}{\sigma} \leq \frac{z-\mu}{\sigma}\right)=\Phi\left(\frac{z-\mu}{\sigma}\right)$

Closure of the normal -- under addition

Fact. If $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right), \mathrm{Y} \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ (both independent normal RV) then $a X+b Y+c \sim \mathcal{N}\left(a \mu_{X}+b \mu_{Y}+c, a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}\right)$

Note: The special thing is that the sum of normal RVs is still a normal RV.

The values of the expectation and variance is not surprising.

- Linearity of expectation (always true)
- When X and Y are independent, $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$

Agenda

- Practice with Normals
- Closure of the Normal
- The Central Limit Theorem (CLT)

Gaussian in Nature

Empirical distribution of collected data often resembles a Gaussian ...

e.g. Height distribution resembles Gaussian.
R.A.Fisher (1918) observed that the height is likely the outcome of the sum of many independent random parameters, i.e., can written as

$$
X=X_{1}+\cdots+X_{n}
$$

Sum of Independent RVs

i.i.d. = independent and identically distributed
X_{1}, \ldots, X_{n} i.i.d. with expectation μ and variance σ^{2}
Define

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

$$
\begin{aligned}
& \mathbb{E}\left(S_{n}\right)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right)=n \mu \\
& \operatorname{Var}\left(S_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=n \sigma^{2}
\end{aligned}
$$

Empirical observation: S_{n} looks like a normal RV as n grows.

CLT (Idea)

Sum of i.i.d. exponential random variables (param 1)

(a) $n=1$

(b) $n=2$

(c) $n=3$

(d) $n=6$

(e) $n=12$

(f) $n=25$

(g) $n=50$

(h) $n=100$

CLT (Idea)

Central Limit Theorem

$$
\operatorname{Var}(X+a)=\operatorname{Va}(X)
$$

X_{1}, \ldots, X_{n} i.i.d., each with expectation μ and variance σ^{2}
Define $S_{n}=X_{1}+\cdots+X_{n}$ and

$$
\begin{aligned}
& Y_{n}=\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \\
& \mathbb{E}\left(Y_{n}\right)=\stackrel{C}{[}\left[\frac{S_{n}-n \mu}{\sigma \sqrt{n}}\right]=\frac{1}{\sigma \sqrt{n}}\left(E\left[S_{n}\right]-n \mu\right)=0 \\
& \operatorname{Var}\left(Y_{n}\right)=\operatorname{Va}\left(\frac{S_{n}-n \mu}{\sigma \sqrt{n}}\right)=\frac{1}{\sigma_{n}} \operatorname{Var}\left(S_{n}\right)=\frac{\sigma^{2} n}{\sigma_{n}^{2}} \\
&=1_{15}
\end{aligned}
$$

Central Limit Theorem

X_{1}, \ldots, X_{n} i.i.d., each with expectation μ and variance σ^{2}
Define $S_{n}=X_{1}+\cdots+X_{n}$ and

$$
\begin{gathered}
Y_{n}=\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \\
\mathbb{E}\left(Y_{n}\right)=\frac{1}{\sigma \sqrt{n}}\left(\mathbb{E}\left(S_{n}\right)-n \mu\right)=\frac{1}{\sigma \sqrt{n}}(n \mu-n \mu)=0 \\
\operatorname{Var}\left(Y_{n}\right)=\frac{1}{\sigma^{2} n}\left(\operatorname{Var}\left(S_{n}-n \mu\right)\right)=\frac{\operatorname{Var}\left(S_{n}\right)}{\sigma^{2} n}=\frac{\sigma^{2} n}{\sigma^{2} n}=1
\end{gathered}
$$

Central Limit Theorem

$$
Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Theorem. (Central Limit Theorem) The CDF of Y_{n} converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(Y_{n} \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x
$$

Central Limit Theorem

$$
F_{\lambda}(\lambda)=\mathbb{P}(x=x)
$$

$$
Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Theorem. (Central Limit Theorem) The CDF of Y_{n} converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(Y_{n} \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x
$$

Also stated as:

- $\lim _{n \rightarrow \infty} Y_{n} \rightarrow \mathcal{N}(0,1)$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$ where $\mu=E\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$

CLT \rightarrow Normal Distribution EVERYWHERE

Neuron Activity

S\&P 500 Returns after Elections

Examples from:

https://galtonboard.com/probabilityexamplesinlife

Example $X \sim \operatorname{Bin}(n, 0.75) \times \approx N(7.5,1.87)$
We flip n independent coins, heads with probability $p=0.75$.

$$
\begin{aligned}
& X=\# \text { heads } \quad \mu=\mathbb{E}(X)=0.75 n \quad \sigma^{2}=\operatorname{Var}(X)=0.1875 n \\
& n=b \\
& -7.5 \quad 1.875 \\
& \mathbb{P}(X \leq 7)=\mathbb{P}(0 \leq x \leq 7) \\
& =\mathbb{P}\left(\frac{\sqrt{-7.7}}{\sqrt{1.875}}\left(\frac{x-7.5}{\sqrt{1.875}}<\frac{-0.5}{\sqrt{1.675}}\right)=\phi^{3}-\phi\right.
\end{aligned}
$$

Example

We flip n independent coins, heads with probability $p=0.75$. $X=\#$ heads $\quad \mu=\mathbb{E}(X)=0.75 n \quad \sigma^{2}=\operatorname{Var}(X)=0.1875 n$

	n	exact	$\mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\right)$ approx
$(X \leq 0.7 n)$	10	0.4744072	0.357500327
	20	0.38282735	0.302788308
	50	0.25191886	0.207108089
	100	0.14954105	0.124106539
	100	0.06247223	0.051235217

