CSE 312

Foundations of Computing II

Lecture 17: The Normal Distribution

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Agenda

- Law of Total Expectation (LTE) Practice
- Chebyshev's Inequality
- The Normal Distribution
- Practice with Normals

Example: Flipping Coins LTE: $E[X]=\sum_{j=1}^{n} E[X \mid A ;)$ $y=2$
suppose wanted g analyze flipping a random number of coins. Suppose someone A_{i} gave us $Y \sim$ Poi (5) fair coins and
heads X from flipping those coins.

$$
\begin{aligned}
& E[X]=0.5 ? ? \\
& \begin{array}{l}
E[X \mid Y=2]=0.52 \\
\sum_{y=0}^{\infty} 0.5 y \cdot e^{-5} \cdot \frac{5^{\varphi}}{y!}
\end{array}
\end{aligned}
$$

Agenda

- Law of Total Expectation (LTE) Practice
- Chebyshev’s Inequality
- The Normal Distribution
- Practice with Normals

Using variance

- If we know more about the random variable, e.g. its variance, we can get a better bound!

Markov's inequality

Chebyshev's Inequality

Theorem. Let X be a random variable. Then, for any $t>0$,

$$
\mathbb{P}(|X-\mathbb{E}(X)| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Proof: Define $Z=X-\mathbb{E}(X)$

$$
E(X)=\left[(X]^{7}\right. \text { Definition of Variance }
$$ 2

$$
\begin{gathered}
\mathbb{P}(|Z| \geq t)=\mathbb{P}\left(Z^{2} \geq t^{2}\right) \leq \frac{\mathbb{E}\left(Z^{2}\right)}{t^{2}}=\frac{t^{2}}{\operatorname{Var}(X)} \\
|Z| \geq t \text { iff } Z^{2} \geq t^{2} \quad \text { Markov's inequality }\left(Z^{2} \geq 0\right)
\end{gathered}
$$

Example - Binomial Random Variable

Chebychev's Inequality $\mathbb{P}(|X-\mathbb{E}(X)| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}$.

Let X be Binomial RV with parameters. $n, p=0.5$

$$
\mathbb{E}(X)=\frac{n}{2}
$$

$$
\ln \operatorname{lar}(x)=\frac{3 n}{n}-\frac{n}{4}
$$

What is the probability that $X \geq \frac{3 n}{4}$?
Chebychev's inequality: $\mathbb{P}\left(x \geq \frac{3 n}{4}\right)=\mathbb{S}\left(x-\frac{n}{2} \geq \frac{n}{4}\right) \stackrel{\left(\frac{n}{n}\right)^{2}}{\leftrightarrows}$

Markov's inequality: $\mathbb{P}\left(X \geq \frac{3 n}{4}\right) \leq \frac{4}{3 n} \cdot \frac{n}{2}=\frac{2}{3}$

$$
\mathbb{P}\left(\frac{\left|X-\frac{n}{2}\right| \geq \frac{n}{4}}{7}\right)
$$

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

- Usually loose upper-bounds are okay when designing for worstcase

Generally, the more you know about your random variable the better tail bounds you can get.

Agenda

- Law of Total Expectation (LTE) Practice
- Chebyshev’s Inequality
- The Normal Distribution
- Practice with Normals

Review - Continuous RVs

Probability Density Function (PDF).
$f: \mathbb{R} \rightarrow \mathbb{R}$ s.t.

- $f(x) \geq 0$ for all $x \in \mathbb{R}$

Cumulative Density Function (CDF).

$$
F(y)=\int_{-\infty}^{y} f(x) \mathrm{d} x
$$

- $\int_{-\infty}^{+\infty} f(x) \mathrm{d} x=1$

Density \neq Probability !
$=X \leq b)=F_{F(\nu)}(b)-F_{X}(c)$

$$
F(y)=\mathbb{P}(X \leq y)
$$

Review - Continuous RVs

$$
\mathbb{P}(X \in[a, b])=\int_{a}^{b} f_{X}(x) \mathrm{d} x=F_{X}(b)-F_{X}(a)
$$

Exponential Distribution

Definition. An exponential random variable X with parameter $\lambda \geq 0$ is follows the exponential density

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

We write $X \sim \operatorname{Exp}(\lambda)$ and say X that follows the exponential distribution.

$$
\begin{aligned}
& \text { CDF: For } y \geq 0, \\
& F_{X}(y)=1-e^{-\lambda y}
\end{aligned}
$$

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

(We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$)

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

(We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$)
Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\mathbb{E}(X)=\mu$, and $\operatorname{Var}(X)=\sigma^{2}$
Expectation follows from density being symmetric around $\mu, f_{X}(\mu-x)=f_{X}(\mu+x)$

The Normal Distribution
Aka a "Bell Curve" (imprecise name)

Shifting and Scaling - turning one normal dist into another

Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Y=a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$

Note: $\frac{X-\mu}{\sigma} \sim \underline{\mathcal{N}(0,1)}$

CDF of normal distribution

Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Y=a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$

Standard (unit) normal $\mathbb{Z} \mathcal{N}(0,1)$
CDF. $\Phi(z)=\mathbb{P}(Z \leq z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{Z} e^{-x^{2} / 2} \mathrm{~d} x$ for $Z \sim \mathcal{N}(0,1)$
Note: $\Phi(z)$ has no closed form - generally given via tables

$$
P(z)=P(Z \leq 2)
$$

Table of $\Phi(z)$ CDF of

Standard Normal Distn

Make sure to use the one linked on the site!

$\Phi \text { Table: } \mathbb{P}(Z \leq z) \text { when } Z \sim \mathcal{N}(0,1)$										
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.5279	0.53188	0.53586
0.1	0.53983	0.5438	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.6170	. 62172	069552	0.6293	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
	0.65542	. 65	0.66276)	D. 6664	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.60146	0.69497	cooer	0.70194	0.7054	0.70884	0.71226	0.71566	0.71904	0.7224
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.7549
0.7	0.75804	0.76115	0.76424	0.7673	0.77035	0.77337	0.77637	0.77935	0.7823	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.8665	0.86864	0.87076	0.87286	0.87493	0.87698	0.879	0.881	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.9032	0.9049	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.9222	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.9452	0.9463	0.94738	0.94845	0.9495	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.9608	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.9732	0.97381	0.97441	0.975	0.97558	0.97615	0.9767
20	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.9803	0.98077	0.98124	0.98169
21	0.88214	0.98257	0.983	0.98341	0.98382	0.98422	0.98461	0.985	0.98537	0.98574
2.2	0.9861	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.9884	0.9887	0.98899
2.8	0.98928	0.98956	0.98983	0.9901	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.9918	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.9943	0.99446	0.99461	0.99477	0.99492	0.99506	0.9952
2.6	0.99534	0.99547	0.9956	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.9972	0.99728	0.99736
2.8	0.99744	0.99752	0.9976	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.999

$$
\begin{aligned}
& \begin{array}{lll}
\text { Example } & \mu=0.4 \\
\text { Let } X \sim N(0.4,4) .
\end{array} \sigma^{2}=4 \quad \frac{X-\mu}{\sigma} \\
& \mathbb{P}(x \leq 1.2)=\mathbb{P}\left(\frac{x-0.4}{2} \leq \frac{1.2-0.4}{2}\right) \\
& =\pi(z \leq 0.4) \\
& =\phi(0.4)=0.66542
\end{aligned}
$$

Example

Let $X \sim \mathcal{N}\left(0.4,4=2^{2}\right)$.

$$
\begin{aligned}
& \mathbb{P}(X \leq 1.2)=\mathbb{P}\left(\frac{X-0.4}{2} \leq \frac{1.2-0.4}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example } \frac{5-3}{\sqrt{16}} \frac{2-3}{4} \\
& \operatorname{Let} X \sim \mathcal{N}(3,16) . \\
& \mathbb{P}(2<x<5)-\mathbb{P}\left(-\frac{1}{4} \leq \frac{x-3}{4} \leq \frac{1}{2}\right) \\
& \mathbb{P}(2 \geq 0.2 \overline{5}) \mathbb{P}\left(-\frac{1}{4} \leq 2 \leq-\frac{1}{2}\right) \quad \mathbb{P}(2 \leq-0.75) \\
& 1-\mathbb{P}(2 \leq 0.75) \phi(0.5)-\Phi(-0.25) \\
& \rightarrow(0.5)-(1-\phi(0.75))
\end{aligned}
$$

Example

Let $X \sim \mathcal{N}(3,16)$.

$$
\begin{aligned}
\mathbb{P}(2<X<5) & =\mathbb{P}\left(\frac{2-3}{4}<\frac{X-3}{4}<\frac{5-3}{4}\right) \\
& =\mathbb{P}\left(-\frac{1}{4}<Z<\frac{1}{2}\right) \\
& =\Phi\left(\frac{1}{2}\right)-\Phi\left(-\frac{1}{4}\right) \\
& =\Phi\left(\frac{1}{2}\right)-\left(1-\Phi\left(\frac{1}{4}\right)\right) \approx 0.29017
\end{aligned}
$$

Example - Off by Standard Deviations

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
$\mathbb{P}(|X-\mu|<k \sigma)=$

Example - Off by Standard Deviations

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\begin{aligned}
\mathbb{P}(|X-\mu|<k \sigma) & =\mathbb{P}\left(\frac{|X-\mu|}{\sigma}<k\right)= \\
& =\mathbb{P}\left(-k<\frac{X-\mu}{\sigma}<k\right)=\Phi(k)-\Phi(-k)
\end{aligned}
$$

e.g. $k=1: 68 \%, k=2: 95 \%, k=3: 99 \%$

Summary of procedure for doing calculations with normal r.v.
If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$

Therefore,

$$
F_{X}(z)=\mathbb{P}(X \leq z)=\mathbb{P}\left(\frac{X-\mu}{\sigma} \leq \frac{z-\mu}{\sigma}\right)=\Phi\left(\frac{z-\mu}{\sigma}\right)
$$

CDF of normal distribution

Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Y=a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$

Standard (unit) normal $Z \sim \mathcal{N}(0,1)$
CDF. $\Phi(z)=\mathbb{P}(Z \leq z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{Z} e^{-x^{2} / 2} \mathrm{~d} x$ for $Z \sim \mathcal{N}(0,1)$
Note: $\Phi(z)$ has no closed form - generally given via tables

If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $F_{X}(z)=\mathbb{P}(X \leq z)=\mathbb{P}\left(\frac{X-\mu}{\sigma} \leq \frac{z-\mu}{\sigma}\right)=\Phi\left(\frac{z-\mu}{\sigma}\right)$

Closure of the normal -- under addition

Fact. If $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right), \mathrm{Y} \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ (both independent normal RV) then $\mathrm{a} X+b Y+c \sim \mathcal{N}\left(a \mu_{X}+b \mu_{Y}+c, a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}\right)$

Note: The special thing is that the sum of normal RVs is still a normal RV.

The values of the expectation and variance is not surprising.

- Linearity of expectation (always true)
- When X and Y are independent, $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$

