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Lecture 17: The Normal Distribution
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Slide Credit: Based on Stefano Tessaro’s slides for 312 19au 

incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & myself ☺

Aleks Jovcic



Agenda

• Law of Total Expectation (LTE) Practice

• Chebyshev’s Inequality

• The Normal Distribution

• Practice with Normals
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Example: Flipping Coins

Suppose wanted to analyze flipping a random number of coins. Suppose someone 
gave us 𝑌 ∼ 𝑃𝑜𝑖(5) fair coins and we wanted to compute the expected number of 
heads 𝑋 from flipping those coins.
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Agenda

• Law of Total Expectation (LTE) Practice

• Chebyshev’s Inequality

• The Normal Distribution

• Practice with Normals
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Using variance

• If we know more about the random variable, e.g. its 
variance, we can get a better bound!
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Chebyshev’s Inequality 
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Theorem. Let 𝑋 be a random variable. Then, for any 𝑡 > 0,

ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var 𝑋

𝑡2 . 

Proof: Define 𝑍 = 𝑋 − 𝔼 𝑋

ℙ |𝑍| ≥ 𝑡 = ℙ 𝑍2 ≥ 𝑡2 ≤
𝔼 𝑍2

𝑡2
=

Var 𝑋

𝑡2

Markov’s inequality (𝑍2 ≥ 0)

Definition of Variance

|𝑍| ≥ 𝑡 iff 𝑍2 ≥ 𝑡2

Markov’s inequality

ℙ 𝑋 ≥ 𝑡 ≤
𝔼 𝑋

𝑡
. 



Example – Binomial Random Variable

Let 𝑋 be Binomial RV with parameters. 𝑛, 𝑝 = 0.5
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𝔼 𝑋 =
𝑛

2

What is the probability that 𝑋 ≥
3𝑛

4
? 

Markov’s inequality: ℙ 𝑋 ≥
3𝑛

4
≤

4

3𝑛
⋅

𝑛

2
=

2

3

𝑉𝑎𝑟 𝑋 =

Chebychev’s inequality: ℙ 𝑋 ≥
3𝑛

4
≤

Chebychev’s Inequality

ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var 𝑋

𝑡2 . 



Tail Bounds

Useful for approximations of complex systems. How good the 
approximation is depends on the actual distribution and the 
context you are using it in.

– Usually loose upper-bounds are okay when designing for worst-
case

Generally, the more you know about your random variable the 
better tail bounds you can get.
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Agenda

• Law of Total Expectation (LTE) Practice

• Chebyshev’s Inequality

• The Normal Distribution

• Practice with Normals
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Review – Continuous RVs
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Probability Density Function (PDF).

𝑓: ℝ → ℝ s.t.

• 𝑓 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

• ∞−׬

+∞
𝑓 𝑥 d𝑥 = 1

Cumulative Density Function (CDF).

𝐹 𝑦 = න
−∞

𝑦

𝑓(𝑥) d𝑥

Theorem. 𝑓 𝑥 =
𝑑𝐹(𝑥)

𝑑𝑥

𝑓(𝑥)

= 1

𝐹(𝑦)

𝑦

Density ≠ Probability ! 𝐹 𝑦 = ℙ 𝑋 ≤ 𝑦



Review – Continuous RVs
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𝑓𝑋(𝑥)

𝑎 𝑏

ℙ 𝑋 ∈ [𝑎, 𝑏] = න
𝑎

𝑏

𝑓𝑋 𝑥 d𝑥 = 𝐹𝑋 𝑏 − 𝐹𝑋(𝑎)



Exponential Distribution

Definition. An exponential random variable 𝑋 with parameter 𝜆 ≥ 0 is 
follows the exponential density

𝑓𝑋 𝑥 = ቊ𝜆𝑒−𝜆𝑥 𝑥 ≥ 0
0 𝑥 < 0

CDF: For 𝑦 ≥ 0,
𝐹𝑋 𝑦 = 1 − 𝑒−𝜆𝑦

We write 𝑋 ∼ Exp 𝜆 and say 𝑋 that follows the exponential distribution.
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The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters 𝜇 ∈ ℝ and 𝜎 ≥ 0 has density

𝑓𝑋 𝑥 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

(We say that 𝑋 follows the Normal Distribution, and write 𝑋 ∼ 𝒩(𝜇, 𝜎2)) 

Carl Friedrich 
Gauss



The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters 𝜇 ∈ ℝ and 𝜎 ≥ 0 has density

𝑓𝑋 𝑥 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

(We say that 𝑋 follows the Normal Distribution, and write 𝑋 ∼ 𝒩(𝜇, 𝜎2)) 

Carl Friedrich 
Gauss

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎2 , then 𝔼 𝑋 = 𝜇, and Var 𝑋 = 𝜎2

Expectation follows from density being symmetric around 𝜇, 𝑓𝑋 𝜇 − 𝑥 = 𝑓𝑋(𝜇 + 𝑥)



The Normal Distribution
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Shifting and Scaling – turning one normal dist into another  

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎2 , then 𝑌 = 𝑎𝑋 + 𝑏 ∼ 𝒩 𝑎𝜇 + 𝑏, 𝑎2𝜎2
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𝔼 𝑌 = 𝑎 𝔼 𝑋 + 𝑏 = 𝑎𝜇 + 𝑏

Var 𝑌 = 𝑎2 Var 𝑋 = 𝑎2𝜎2

Proof. 

Can show with algebra that the PDF of 
𝑌 = 𝑎𝑋 + 𝑏 is still normal.

Note:  
𝑋−𝜇

𝜎
∼ 𝒩 0, 1



CDF of normal distribution
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Standard (unit) normal  𝒁 ∼ 𝒩 0, 1

CDF. Φ 𝑧 = ℙ 𝑍 ≤ 𝑧 =
1

2𝜋
∞−׬

𝑧
𝑒−𝑥2/2d𝑥 for 𝑍 ∼ 𝒩 0, 1

Note: Φ 𝑧 has no closed form – generally given via tables 

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎2 , then 𝑌 = 𝑎𝑋 + 𝑏 ∼ 𝒩 𝑎𝜇 + 𝑏, 𝑎2𝜎2



Table of Φ 𝑧 CDF of 
Standard Normal Distn
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Make sure to use the one 
linked on the site!



Example

Let 𝑋 ∼ 𝒩 0.4, 4 .  
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ℙ 𝑋 ≤ 1.2



Example

Let 𝑋 ∼ 𝒩 0.4, 4 = 22 .  
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ℙ 𝑋 ≤ 1.2 = ℙ
𝑋 − 0.4

2
≤

1.2 − 0.4

2

= ℙ
𝑋 − 0.4

2
≤ 0.4

∼ 𝒩 0, 1

= Φ(0.4) ≈ 0.6554



Example

Let 𝑋 ∼ 𝒩 3, 16 .  

ℙ 2 < 𝑋 < 5



Example

Let 𝑋 ∼ 𝒩 3, 16 .  
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ℙ 2 < 𝑋 < 5 = ℙ
2 − 3

4
<

𝑋 − 3

4
<

5 − 3

4

= ℙ −
1

4
< 𝑍 <

1

2

= Φ
1

2
− Φ −

1

4

≈ 0.29017= Φ
1

2
− 1 − Φ

1

4



Example – Off by Standard Deviations
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Let 𝑋 ∼ 𝒩 𝜇, 𝜎2 .  

ℙ 𝑋 − 𝜇 < 𝑘𝜎 =



Example – Off by Standard Deviations
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Let 𝑋 ∼ 𝒩 𝜇, 𝜎2 .  

ℙ 𝑋 − 𝜇 < 𝑘𝜎 = ℙ
𝑋 − 𝜇

𝜎
< 𝑘 =

= ℙ −𝑘 <
𝑋 − 𝜇

𝜎
< 𝑘 = Φ 𝑘 − Φ(−𝑘)

e.g. 𝑘 = 1: 68%, 𝑘 = 2: 95%, 𝑘 = 3: 99%



Summary of procedure for doing calculations with normal r.v.
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If 𝑋 ∼ 𝒩 𝜇, 𝜎2 , then  
𝑋 −𝜇

𝜎
∼ 𝒩(0, 1)

Therefore, 

𝐹𝑋 𝑧 = ℙ 𝑋 ≤ 𝑧 = ℙ
𝑋 − 𝜇

𝜎
≤

𝑧 − 𝜇

𝜎
= Φ

𝑧 − 𝜇

𝜎



CDF of normal distribution
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CDF. Φ 𝑧 = ℙ 𝑍 ≤ 𝑧 =
1

2𝜋
∞−׬

𝑧
𝑒−𝑥2/2d𝑥 for 𝑍 ∼ 𝒩 0, 1

Note: Φ 𝑧 has no closed form – generally given via tables 

If 𝑋 ∼ 𝒩 𝜇, 𝜎2 , then 𝐹𝑋 𝑧 = ℙ 𝑋 ≤ 𝑧 = ℙ
𝑋−𝜇

𝜎
≤

𝑧−𝜇

𝜎
= Φ(

𝑧−𝜇

𝜎
)

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎2 , then 𝑌 = 𝑎𝑋 + 𝑏 ∼ 𝒩 𝑎𝜇 + 𝑏, 𝑎2𝜎2

Standard (unit) normal  𝒁 ∼ 𝒩 0, 1



Closure of the normal -- under addition

Fact. If 𝑋 ∼ 𝒩 𝜇𝑋, 𝜎𝑋
2 , Y ∼ 𝒩 𝜇𝑌, 𝜎𝑌

2 (both independent normal RV) 
then a𝑋 + 𝑏𝑌 + 𝑐 ∼ 𝒩 𝑎𝜇𝑋 + 𝑏𝜇𝑌 + 𝑐, 𝑎2𝜎𝑋

2 + 𝑏2𝜎𝑌
2

Note: The special thing is that the sum of normal RVs is still a normal RV.

The values of the expectation and variance is not surprising. 
• Linearity of expectation (always true) 
• When 𝑋 and 𝑌 are independent, 𝑉𝑎𝑟 𝑎𝑋 + 𝑏𝑌 = 𝑎2𝑉𝑎𝑟 𝑋 + 𝑏2𝑉𝑎𝑟(𝑌)


