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Agenda

• Joint Continuous Distributions

• Conditional Expectation

– Law of Total Expectation

• Tail Bounds

– Markov’s Inequality

– Chebyshev’s Inequality
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Independence (continuous random variables)
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Definition. Let 𝑋 and 𝑌 be continuous random variables. The joint pdf  
of 𝑋 and 𝑌 is

𝑓𝑋,𝑌 𝑎, 𝑏 ≠ Pr(𝑋 = 𝑎, 𝑌 = 𝑏)

Definition. 𝑋 and 𝑌 are independent iff for all 𝑎, 𝑏

𝑓𝑋,𝑌 𝑎, 𝑏 = 𝑓𝑋 𝑎 ⋅ 𝑓𝑌 𝑏

Definition. The joint range of 𝑝𝑋,𝑌 is

Ω 𝑋, 𝑌 = 𝑐, 𝑑 ∶ 𝑝𝑋,𝑌 𝑐, 𝑑 > 0 ⊆ Ω 𝑋 × Ω 𝑌



• Suppose that the surface of a disk is a circle with area R centered at 
the origin and that there is a single point imperfection at a location 
with is uniformly distributed across the surface of the disk. Let X and 
Y be the x and y coordinates of the imperfection (random variables) 
and let Z be the distance of the imperfection from the origin. 

– What is their joint density f(x,y)?
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• Suppose that the surface of a disk is a circle with area R centered at the origin 
and that there is a single point imperfection at a location with is uniformly 
distributed across the surface of the disk. Let X and Y be the x and y coordinates 
of the imperfection (random variables) and let Z be the distance of the 
imperfection from the origin.
– What is the range of X & Y and the marginal density of X and of Y?
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Poll:  
What is Ω𝑋?

a. [− 𝑅2 − 𝑥2 , 𝑅2 − 𝑥2]
b. [−𝑅 , 𝑅]

c. [− 𝑅2 − 𝑦2 , 𝑅2 − 𝑦2]
d. Not sure



• Suppose that the surface of a disk is a circle with area R centered at the origin 
and that there is a single point imperfection at a location with is uniformly 
distributed across the surface of the disk. Let X and Y be the x and y coordinates 
of the imperfection (random variables) and let Z be the distance of the 
imperfection from the origin.
– Are X and Y independent?
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R
Poll:  
Are X and Y independent?
a. yes
b. no



• Suppose that the surface of a disk is a circle with area R centered at the origin 
and that there is a single point imperfection at a location with is uniformly 
distributed across the surface of the disk. Let X and Y be the x and y coordinates 
of the imperfection (random variables) and let Z be the distance of the 
imperfection from the origin.
– What is E(Z)?
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All of this generalizes to more than 2 random variables
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Agenda

• Joint Continuous Distributions

• Conditional Expectation

– Law of Total Expectation

• Tail Bounds

– Markov’s Inequality

– Chebyshev’s Inequality
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Conditional Expectation
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Definition. Let 𝑋 be a discrete random variable then the conditional 
expectation of 𝑋 given event 𝐴 is

𝐸 𝑋 𝐴] = 

𝑥 ∈ Ω(𝑋)

𝑥 Pr 𝑋 = 𝑥 𝐴)

• Linearity of expectation still applies here
𝐸 𝑎𝑋 + 𝑏𝑌 + 𝑐 𝐴] = 𝑎𝐸 𝑋 𝐴] + 𝑏𝐸 𝑌 𝐴] + 𝑐



Conditional Expectation
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Definition. Let 𝑋 be a discrete random variable then the conditional 
expectation of 𝑋 given event 𝑌 = 𝑦 is

𝐸 𝑋 𝑌 = 𝑦] = 

𝑥 ∈ Ω(𝑋)

𝑥 Pr 𝑋 = 𝑥 𝑌 = 𝑦)

• Linearity of expectation still applies here
𝐸 𝑎𝑋 + 𝑏𝑌 + 𝑐 𝑌 = 𝑦] = 𝑎𝐸 𝑋 𝑌 = 𝑦] + 𝑏𝐸 𝑌 𝑌 = 𝑦] + 𝑐



Agenda

• Joint Continuous Distributions

• Conditional Expectation

– Law of Total Expectation

• Tail Bounds

– Markov’s Inequality

– Chebyshev’s Inequality
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Law of Total Expectation
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Law of Total Expectation (event version). Let 𝑋 be a random variable 
and let events 𝐴1, … , 𝐴𝑛 partition the sample space. Then,

𝐸[𝑋] = 

𝑖=1

𝑛

𝐸 𝑋 𝐴𝑖 Pr(𝐴𝑖)



Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

𝐸 𝑋 = 

𝑥 ∈Ω(𝑋)

𝑥 Pr(𝑋 = 𝑥)

= 

𝑥 ∈Ω(𝑋)

𝑥 

𝑖=1

𝑛

Pr 𝑋 = 𝑥 𝐴𝑖)Pr(𝐴𝑖)

= 

𝑖=1

𝑛

Pr 𝐴𝑖 
𝑥∈Ω 𝑋

𝑥 Pr 𝑋 = 𝑥 𝐴𝑖)]

= 

𝑖=1

𝑛

Pr 𝐴𝑖 𝐸 𝑋 𝐴𝑖]
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(by LTP)

(change order of sums)

(def of cond. expect.)



Law of Total Expectation

16

Law of Total Expectation (random variable version). Let 𝑋 be a 
random variable and 𝑌 be a discrete random variable. Then,

𝐸[𝑋] = 

𝑦 ∈Ω(𝑌)

𝐸 𝑋 𝑌 = 𝑦 Pr(𝑌 = 𝑦)



Example: Flipping Coins

Suppose wanted to analyze flipping a random number of coins. Suppose someone 
gave us 𝑌 ∼ 𝑃𝑜𝑖(5) fair coins and we wanted to compute the expected number of 
heads 𝑋 from flipping those coins.
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Elevator rides

The number of people who enter an elevator on the ground floor is a 
Poisson random variable with mean 10. If there are N floors above the 
ground floor, and if each person is equally likely to get off at any one of 
the N floors, independently of where others get off, compute the 
expected number of stops the elevator will make before discharging all 
the passengers.
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Reference Sheet (with continuous RVs)
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Agenda

• Joint Continuous Distributions

• Conditional Expectation

– Law of Total Expectation

• Tail Bounds

– Markov’s Inequality

– Chebyshev’s Inequality
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Tail Bounds (Idea)

Bounding the probability a random variable is far from its 
mean. Usually statements of the form:

Pr 𝑋 ≥ 𝑎 ≤ 𝑏
Pr |𝑋 − 𝐸 𝑋 | ≥ 𝑎 ≤ 𝑏

Useful tool when

• An approximation that is easy to compute is sufficient

• The process is too complex to analyze exactly
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Agenda

• Joint Continuous Distributions

• Conditional Expectation

– Law of Total Expectation

• Tail Bounds

– Markov’s Inequality

– Chebyshev’s Inequality
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Markov’s Inequality 
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Theorem. Let 𝑋 be a random variable taking only non-negative values. 
Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤
𝔼 𝑋

𝑡
. 

ℙ 𝑋 ≥ 𝑡 ⋅ 𝔼 𝑋 ≤
1

𝑡
. 

Incredibly simplistic – only requires that the random variable is non-negative and 
only needs you to know expectation. You don’t need to know anything else about 
the distribution of 𝑋.



Markov’s Inequality – Proof  
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Theorem. Let 𝑋 be a (discrete) random variable taking 
only non-negative values. Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤
𝔼 𝑋

𝑡
. 

𝔼 𝑋 = 

𝑥

𝑥 ⋅ ℙ(𝑋 = 𝑥)

= 

𝑥≥𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥) + 

𝑥<𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥)



Markov’s Inequality – Proof  
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Theorem. Let 𝑋 be a (discrete) random variable taking 
only non-negative values. Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤
𝔼 𝑋

𝑡
. 

𝔼 𝑋 = 

𝑥

𝑥 ⋅ ℙ(𝑋 = 𝑥)

= 

𝑥≥𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥) + 

𝑥<𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥)

≥ 

𝑥≥𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥)

≥ 

𝑥≥𝑡

𝑡 ⋅ ℙ(𝑋 = 𝑥) = 𝑡 ⋅ ℙ(𝑋 ≥ 𝑡)

≥ 0 because 𝑥 ≥ 0
whenever ℙ 𝑋 = 𝑥 ≥
0 (takes only non-
negative values)  

Follows by re-arranging terms 
… 



Example – Binomial Random Variable

Let 𝑋 be Binomial RV with parameters. 𝑛, 𝑝
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𝔼 𝑋 =
𝑛

2

What is the probability that 𝑋 ≥
3𝑛

4
? 

Markov’s inequality: ℙ 𝑋 ≥
3𝑛

4
≤

4

3𝑛
⋅

𝑛

2
=

2

3
Can we do better?

Markov’s inequality

ℙ 𝑋 ≥ 𝑡 ≤
𝔼 𝑋

𝑡
. 



Agenda

• Joint Continuous Distributions

• Conditional Expectation

– Law of Total Expectation

• Tail Bounds

– Markov’s Inequality

– Chebyshev’s Inequality
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Using variance

• If we know more about the random variable, e.g. its 
variance, we can get a better bound!
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Chebyshev’s Inequality 
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Theorem. Let 𝑋 be a random variable. Then, for any 𝑡 > 0,

ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var 𝑋

𝑡2 . 

Proof: Define 𝑍 = 𝑋 − 𝔼 𝑋

ℙ |𝑍| ≥ 𝑡 = ℙ 𝑍2 ≥ 𝑡2 ≤
𝔼 𝑍2

𝑡2
=

Var 𝑋

𝑡2

Markov’s inequality (𝑍2 ≥ 0)

Definition of Variance

|𝑍| ≥ 𝑡 iff 𝑍2 ≥ 𝑡2

Markov’s inequality

ℙ 𝑋 ≥ 𝑡 ≤
𝔼 𝑋

𝑡
. 



Example – Binomial Random Variable

Let 𝑋 be Binomial RV with parameters. 𝑛, 𝑝 = 0.5
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𝔼 𝑋 =
𝑛

2

What is the probability that 𝑋 ≥
3𝑛

4
? 

Markov’s inequality: ℙ 𝑋 ≥
3𝑛

4
≤

4

3𝑛
⋅

𝑛

2
=

2

3

𝑉𝑎𝑟 𝑋 =

Chebychev’s inequality: ℙ 𝑋 ≥
3𝑛

4
≤

Chebychev’s Inequality

ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var 𝑋

𝑡2 . 



Tail Bounds

Useful for approximations of complex systems. How good the 
approximation is depends on the actual distribution and the 
context you are using it in.

– Usually loose upper-bounds are okay when designing for worst-
case

Generally, the more you know about your random variable the 
better tail bounds you can get.
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