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Agenda

e Joint Continuous Distributions @&

* Conditional Expectation
— Law of Total Expectation

* Tail Bounds
— Markov’s Inequality
— Chebyshev’s Inequality



Discrete

Continuous

Joint PMF/PDF

pX,Y(xa y) — IP(X =, Y = y)

fxy(z,y) #P(X =z,Y = y)

Joint range/support

QX,Y {(:c,y) € Qx X Ny :pX,y(:C,y) - O} {(a:,y) €Nx X Ny : fX,y(.'E,y) > 0}
Joint CDF Fxy (,y) =) i<ps<y PXY (L) Fxy (z,y)= " [7 fxy (t s)dsdt
Normalization > e Pxy(T,y) =1 o o fxy (zy) dady =1
Marginal PMF/PDF px(z) =), pxy(z,y) fx(@)= [ fxy(z, y)dy

Expectation

Elg(X.Y)] => ., 9 y)pxy(z,y)

Elg(X,Y)] = |7 J=o 9(x,y) fx v (x, y)dzdy




Independence (continuous random variables)

Definition. Let X and Y be continuous random variables. The joint pdf
of XandYis
| fxyr(a,b) # Pr(X = a,Y = b)

Definition. The joint range of py y is
QX,Y) ={(c,d) : pxy(c,d) > 0} € Q(X) x Q(Y)

Definition. X and Y are independent iff for all a, b

fer(@b) = fx(@) - £y (b)
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* Suppose that the surface of a disk is a circle Wlth}Pé’ R centered at
the origin and that there is a single point imperfection at a location
with is uniformly distributed across the surface of the disk. Let X and
Y be the x and y coordinates of the imperfection (random variables)
and let Z be the distance of the imperfection from the origin.

— What is their joint density f(x,y)?

— X [[e =17 arel
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* Suppose that the surface of a disk is a circle with area R centered at the origin
and that there is a single point imperfection at a location with is uniformly
distributed across the surface of the disk. Let X and Y be the x and y coordinates
of the imperfection (random variables) and let Z be the distance of the
imperfection from the origin. y < y 27

— What is the range of X & Y and the marginal densi\}‘Wand of Y?
Q ;[’-K R) (),f_L A - 2J@-¥
X J 79)( X/ - TRE g N2

«SZ\/ :['RI Rj 2% _—

EWhatisQX?
| a —VRZ — x2 ,W/R% — x2]
OPS b [~R,R]
R v o [-VR?-y*,JR* - y?]
d Not sure
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* Suppose that the surface of a disk is a circle with area R centered at the origin
and that there is a single point imperfection at a location with is uniformly
distributed across the surface of the disk. Let X and Y be the x and y coordinates
of the imperfection (random variables) and let Z be the distance of the
imperfection from the origin.

O
| | ?

Sy, (0-5, 0-15)
“t J—ﬁx "

f “\ 5 T
. Are X and Y independent?
\JR 'a. yes




* Suppose that the surface of a disk is a circle with area R centered at the origin
and that there is a single point imperfection at a location with is uniformly
distributed across the surface of the disk. Let X and Y be the x and y coordinates
of the imperfection (random variables) and let Z be the distance of the
imperfection from the origin.

—WhatisE(Z)?ﬁ(\q 9\ L‘W f\m J jff\

\ x-fj _‘K

117?? X;

—
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All of this generalizes to more than 2 random variables

Discrete Continuous
Joint PMF/PDF pxyiz, ) =MX =Y =y) fxyvizg)E#F R X =gY =%
Joint range/support
QX,Y {(a:,y) € Qx x Qy :px,y(x,y) > 0} {(.L“,y) € Qx x Qy : fx,y(:zf,y) > 0}
Joint CDF FX,Y (.77, y) - Zt<xis<y px,y(t, S) FX,Y (.’L’, y) - ffoo fiyoo fX’y (t, 8) dsdt
Normalization D ey Pxy(T,y) =1 2 20 fxy (z,y) dedy = 1
Marginal PMF/PDF px(z) =3 pxy(®,y) fx(z)= [T fxy(z y)dy
Expectation Elg(X,Y)]=>, ., 9@ ypxy(z,y) | Elg(X,Y)] = [ [Co 9(x,y)fxy(z,y)dxdy




Agenda

e Joint Continuous Distributions

* Conditional Expectation
— Law of Total Expectation

* Tail Bounds
— Markov’s Inequality
— Chebyshev’s Inequality
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Conditional Expectation

Definition. Let X be a discrete random variable then the conditional
~ expectation of X' given event A is

* Linearity of expectation still applies here
ElaX + bY + c|A] = aE|X | A] + bE|Y | A] + ¢
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Conditional Expectation

Definition. Let X be a discrete random variable then the conditional
~ expectation of X giveneventY =yis

EIXIY=yl= ) xPr(X=x|V=y)

* Linearity of expectation still applies here
ElaX+bY +c|Y =y]|=aE[X|Y =y]+DbE[Y|Y =y] +¢C
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Agenda

e Joint Continuous Distributions

* Conditional Expectation
— Law of Total Expectation @

* Tail Bounds
— Markov’s Inequality
— Chebyshev’s Inequality
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Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable
~and let events A4, ..., A;, partition the sample space. Then,

E[X] = ) E[X|A]Pr(4)
=1
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Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

E[X] = 2 x Pr(X = x)

x €Q(X)

2 xz: Pr(X = x |A;)Pr(4;) (by LTP)

x €eQX) i=1

— Pr(4;) xPr(X =x|A4;)]
; erQ(X)

= ) Pr(4) E[X|4]

(change order of sums)

(def of cond. expect.)
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Law of Total Expectation

Law of Total Expectation (random variable version). Let X be a
- random variable and Y be a discrete random variable. Then,

ElXI= ) EIXIY =y[Pr(¥ = y)
y €Q(Y)
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Example: Flipping Coins

Suppose wanted to analyze flipping a random number of coins. Suppose someone
gave us Y ~ Poi(5) fair coins and we wanted to compute the expected number of

heads X from flipping those coins.

EIx): 3 ElXIV-yIR(Y+y)

7
€ (xv] 2 &(xJe v
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Elevator rides

The number of people who enter an elevator on the ground floor is a
Poisson random variable with mean 10. If there are N floors above the
ground floor, and if each person is equally likely to get off at any one of
the N floors, independently of where others get off, compute the
expected number of stops the elevator will make before discharging all

the passengers. \L s | N shps &) fle
E0VITZEIV]  qruar) At leorl we gone g @)
ety 1% (1 - (1~ -\3“) = | = T mboty geto fp)

/! \"’ ’?(Gll C‘noodic mo’h«a Flw)
& - lo
EIE Y N0 (I-R))e °h S Z (oA

Icro

—
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Reference Sheet (with continuous RVs)

Discrete Continuous
Joint PMF/PDF pxy(x,y) =P(X =x,Y =y) fxy(x,y) # PX =xY =y)
; X Y
Joint CDF Fyy(x,y) = z Z Pxy(t,s) Fyy(x,y) = f f fiy(t, s)dsdt
t=x s=vy —00 v —00
Normalization Z Z Dy () = 1 j J’ foyCty)dxdy = 1
Marginal [
PMFg/PDF pX(x) Z pX ]"(x y) fx(.ff) = ] fxly(x, y)dy
Expectation ElgiX,Y)] = Z Z g(x, y)pxy(x,y) Elg(X,Y)] = f r g,V fyy(x,y)dxdy
" —o0J -
Conditional b (| y) = Pxy(x,¥) fly) = fxy(x,y)
PME/PDF XY py(¥) i fr ()
Conditional ] — ”
ExPectation EIX|Y=y]= Zx:xl?xw(x | y) EX|Y=yvy]= I_mxfxw(x | v)dx
IndePendenCE vx,y, px,v(x: y) = px(X)py(¥) Vx,y, fx,}’(x: y) = fx(X)fy(¥)




Agenda

* Joint Continuous Distributions
* Conditional Expectation
— Law of Total Expectation

* Tail Bounds -
— Markov’s Inequality
— Chebyshev’s Inequality
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Tail Bounds (Idea)

Bounding the probability a random variable is far from its
mean. Usually statements of the form:

Pr(X>a)<b
Pr(|X — E[X]| = a) < b

Useful tool when
* An approximation that is easy to compute is sufficient
* The process is too complex to analyze exactly
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Agenda

e Joint Continuous Distributions

* Conditional Expectation
— Law of Total Expectation

* Tail Bounds
— Markov’s Inequality a
— Chebyshev’s Inequality
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Markov’s Inequality

_____________________________________________________________________________________________________________________________________________________________________

Theorem. Let X be a random variable taking only non-negative values.

Then, forany t > 0, —
o axrs) ¢ £

P(X x(t) < ZX E(X)

P(X >t-E(X)) < %

IriLlcredibly simplistic — only requires that the random variable is non-negative and

only needs you to know expectation. You don’t need to know anything else about
the distribution of X. >3




. Theorem. Let X be a (discrete) random variable taking

Markov’s Inequality — Proof only non-negative values. Then, forany ¢t > 0,

P(X > t) s@.

_____________________________________________________________________________________

E(X) =zx-uv>(x=x)

=;x.p(xzx)+x2<tx-P(X=x)
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. Theorem. Let X be a (discrete) random variable taking

Markov’s |nequa|ity — Proof only non-negative values. Then, forany ¢t > 0,

IP(X>t)<M

_____________________________________________________________________________________

E(X) = ZX P(X = x)
> (0 becausex = 0

ZEX'P(X=X)+2x-[P>(X:x) whenever P(X = x) >

0 (takes only non-
negative values)

5
@Zx-P(X=X) ([Yj >{.w(KX74) z(x7T

xz2t

> - < \
=t [ T(X2¢) < y
z t-PX=x) =t¢- [P(X > t) Follows by re-arranging terms
ot
[$4%
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Markov’s inequality

Example - Binomial Random Variable IE(X)

P(X >t) < —=
Let X be Binomial RV with parameters. n, p
n
E(X) ==
(X =7
What is the probability that X = %n g
, : 3 4 2
Markov’s inequality: P (X = Tn) =5 % =3 Can we do better?
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Agenda

e Joint Continuous Distributions

* Conditional Expectation
— Law of Total Expectation

* Tail Bounds
— Markov’s Inequality
— Chebyshev’s Inequality a
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Using variance

* If we know more about the random variable, e.g. its
variance, we can get a better bound!

28



Markov’s inequality
Chebyshev’s Inequality P(X > ¢) < E® IE(X)

________________________________________________________________________________________________________________________________________________________

Theorem. Let X be a random variable. Then, forany t > 0,

Var(X )

P(lX —E@X)| =¢) <

________________________________________________________________________________________________________________________________________________________

Proof: Define Z = X — E(X) Defjnition of Variance

E(Z2) Afar(X
P(1Z| > t) = P(Z2 > t2) < (tz ) tg )

2 ) _ ) . 2
Z| > tiff 22 > t2 Markov’s inequality (Z= = 0) N



Chebychev's Inequality

Var(X
P(X — EQO)| > ) < =52

Example - Binomial Random Variable

Let X be Binomial RV with parameters.n,p = 0.5

E(X) :g Var(X) =

What is the probability that X > %n E

Chebychev’s inequality: P (X > %) <

4
3n

n_
273 50

Markov’s inequality: IP (X = %n) <



Tail Bounds

Useful for approximations of complex systems. How good the
approximation is depends on the actual distribution and the
context you are using it in.

— Usually loose upper-bounds are okay when designing for worst-
case

Generally, the more you know about your random variable the
better tail bounds you can get.
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