CSE 312 Foundations of Computing II

Lecture 16: Joint Continuous, Conditional Distributions, and Tail Bounds

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Anna Karlin, Ryan O'Donnell, Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

1

- Joint Continuous Distributions
- Conditional Expectation
 Law of Total Expectation
- Tail Bounds
 - Markov's Inequality
 - Chebyshev's Inequality

2

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$	$f_{X,Y}(x,y) \neq \mathbb{P}(X=x,Y=y)$
Joint range/support		
$\Omega_{X,Y}$	$\{(x,y)\in\Omega_X\times\Omega_Y:p_{X,Y}(x,y)>0\}$	$\{(x,y)\in\Omega_X\times\Omega_Y:f_{X,Y}(x,y)>0\}$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x, s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x,y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_y p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$

Independence (continuous random variables)

Definition. Let *X* and *Y* be continuous random variables. The **joint pdf** of *X* and *Y* is

$$f_{X,Y}(a,b) \neq \Pr(X=a,Y=b)$$

Definition. The **joint range** of $p_{X,Y}$ is $\Omega(X,Y) = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega(X) \times \Omega(Y)$

Definition. *X* and *Y* are **independent** iff for all *a*, *b* $f_{X,Y}(a, b) = f_X(a) \cdot f_Y(b)$ Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.

– What is their joint density f(x,y)?

$$f_{X,Y} = c \in X^2 + V^2 \leq R^2 \qquad f_{X,Y} \left(\frac{R}{2}, \frac{R}{3}\right) = \frac{1}{TP}^2$$

$$\int \int c = 1 = c T R^2 = 1$$

$$\int c = \frac{1}{TR^2} \qquad \int c = \frac{1}{TR^2} L$$

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin. X"+ y"= RZ
 - What is the range of X & Y and the marginal density of X and of Y?

 $\mathcal{I}_{X}: [-R, R]$ $\mathcal{I}_{Y}: [-R, R]$

R

f(y) = .

 $f_{\chi}(x) = \int \frac{1}{\pi R^2} dg = \frac{2 \sqrt{R^2 - \chi^2}}{\pi R^2} - \sqrt{R^2 - \chi^2}$ Poll: What is Ω_X ? *a.* $\left[-\sqrt{R^2 - x^2}, \sqrt{R^2 - x^2}\right]$ b. [-R, R]*c.* $\left[-\sqrt{R^2 - y^2}, \sqrt{R^2 - y^2}\right]$ d. Not sure

• Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
 - What is E(Z)? $g(x_{1}y) = (x_{1}y)$

 $\overline{E}\left[\int X^{2} \cdot y^{2}\right] = \int \int X^{2} \cdot y^{2} \frac{1}{\pi \pi^{2}} dx dy$ $x^{2} \cdot y^{2} \in \mathbb{R}^{2}$

 $E[g(X,Y)] = \int \int g(x,y) f_{X,Y}(x,y) dv dy$

All of this generalizes to more than 2 random variables

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$	$f_{X,Y}(x,y) \neq \mathbb{P}(X=x,Y=y)$
Joint range/support		
$\Omega_{X,Y}$	$\{(x,y)\in\Omega_X\times\Omega_Y:p_{X,Y}(x,y)>0\}$	$\{(x,y)\in\Omega_X\times\Omega_Y:f_{X,Y}(x,y)>0\}$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x, s \le y} p_{X,Y}(t,s)$	$\int F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x,y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_y p_{X,Y}(x,y)$	$\int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$
Expectation	$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$

- Joint Continuous Distributions
- Conditional Expectation
 Law of Total Expectation
- Tail Bounds
 - Markov's Inequality
 - Chebyshev's Inequality

Conditional Expectation

Definition. Let X be a discrete random variable then the **conditional expectation** of X given event A is

$$E[X \mid A] = \sum_{x \in \Omega(X)} x \Pr(X = x \mid A)$$

Linearity of expectation still applies here
 E[aX + bY + c| A] = aE[X | A] + bE[Y | A] + c

Conditional Expectation

Definition. Let *X* be a discrete random variable then the **conditional expectation** of *X* given event Y = y is

$$E[X \mid Y = y] = \sum_{x \in \Omega(X)} x \Pr(X = x \mid Y = y)$$

• Linearity of expectation still applies here E[aX + bY + c| Y = y] = aE[X | Y = y] + bE[Y | Y = y] + c

- Joint Continuous Distributions
- Conditional Expectation
 Law of Total Expectation
- Tail Bounds
 - Markov's Inequality
 - Chebyshev's Inequality

Law of Total Expectation

Law of Total Expectation (event version). Let *X* be a random variable and let events $A_1, ..., A_n$ partition the sample space. Then, $E[X] = \sum_{i=1}^{n} E[X|A_i] Pr(A_i)$

Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

$$E[X] = \sum_{x \in \Omega(X)} x \Pr(X = x)$$

$$= \sum_{x \in \Omega(X)} x \sum_{i=1}^{n} \Pr(X = x | A_i) \Pr(A_i)$$
(by LTP)
$$= \sum_{i=1}^{n} \Pr(A_i) \sum_{x \in \Omega(X)} x \Pr(X = x | A_i)]$$
(change order of sums)
$$= \sum_{i=1}^{n} \Pr(A_i) E[X|A_i]$$
(def of cond. expect.)

Law of Total Expectation

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$E[X] = \sum_{y \in \Omega(Y)} E[X|Y = y] \Pr(Y = y)$$

Example: Flipping Coins

Suppose wanted to analyze flipping a random number of coins. Suppose someone gave us $Y \sim Poi(5)$ fair coins and we wanted to compute the expected number of heads X from flipping those coins.

Elevator rides

The number of people who enter an elevator on the ground floor is a Poisson random variable with mean 10. If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where others get off, compute the expected number of stops the elevator will make before discharging all the passengers. $Y_{i,=} | f stops a floor i$ $E[V_{j}] = \sum_{i=1}^{N} E[V_{i}] \qquad P(V_{i=1}) = P(ct least are perm orbits orbits)$ $E[Y|X:h] = N(1 - (1 - \frac{1}{N})^{h}) = 1 - \overline{H}(nobody \text{ geb aff})$ $E[Y] = \sum_{k=0}^{\infty} N(1 - (1 - \frac{1}{N})^{k}) e^{-10} \frac{10}{h!} = 1 - \overline{H}(all choose another flow)$ $E[Y] = \sum_{k=0}^{\infty} N(1 - (1 - \frac{1}{N})^{k}) e^{-10} \frac{10}{h!} = 1 - (1 - \frac{1}{N})^{k}$

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = P(X = x, Y = y)$	$f_{X,Y}(x,y) \neq P(X = x, Y = y)$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x} \sum_{s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{X,Y}(x,y)dxdy=1$
Marginal PMF/PDF	$p_X(x) = \sum_y p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Conditional	$p_{X,Y}(x,y) = \frac{p_{X,Y}(x,y)}{p_{X,Y}(x,y)}$	$f_{X,Y}(x,y) = \frac{f_{X,Y}(x,y)}{f_{X,Y}(x,y)}$
PMF/PDF	$p_{X Y}(x y) = \frac{1}{p_Y(y)}$	$f_X _Y(x \mid y) = \frac{f_Y(y)}{f_Y(y)}$
Conditional	$E[X \mid Y = y] = \sum x n_{y \mapsto y} (x \mid y)$	$E[Y Y = u] = \int_{-\infty}^{\infty} uf (u u) du$
Expectation	$\sum_{x} \sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{x$	$E[X Y = y] = \int_{-\infty}^{\infty} x J_{X Y}(x y) dx$
Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$

- Joint Continuous Distributions
- Conditional Expectation
 Law of Total Expectation
- Tail Bounds
 - Markov's Inequality
 - Chebyshev's Inequality

Tail Bounds (Idea)

Bounding the probability a random variable is far from its mean. Usually statements of the form:

 $\Pr(X \ge a) \le b$ $\Pr(|X - E[X]| \ge a) \le b$

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly

- Joint Continuous Distributions
- Conditional Expectation
 Law of Total Expectation
- Tail Bounds
 - Markov's Inequality
 - Chebyshev's Inequality

Markov's Inequality

Theorem. Let X be a random variable taking only non-negative values. Then, for any t > 0, 7(X25) 5 E[X] $\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}(X)}{t}.$ $\mathbb{P}(X \ge t \cdot \mathbb{E}(X)) \le \frac{1}{t}.$

Incredibly simplistic – only requires that the random variable is non-negative and only needs you to know <u>expectation</u>. You don't need to know **anything else** about the distribution of X.

Markov's Inequality – Proof

Theorem. Let *X* be a (discrete) random variable taking only non-negative values. Then, for any t > 0,

 $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}.$

$$\mathbb{E}(X) = \sum_{x} x \cdot \mathbb{P}(X = x)$$
$$= \sum_{x \ge t} x \cdot \mathbb{P}(X = x) + \sum_{x < t} x \cdot \mathbb{P}(X = x)$$

24

Markov's Inequality – Proof

Theorem. Let *X* be a (discrete) random variable taking only non-negative values. Then, for any t > 0,

 $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}.$

$$E(X) = \sum_{x} x \cdot \mathbb{P}(X = x)$$

$$= \sum_{x \ge t} x \cdot \mathbb{P}(X = x) + \sum_{x < t} x \cdot \mathbb{P}(X = x)$$

$$\geq 0 \text{ because } x \ge 0 \text{ whenever } \mathbb{P}(X = x) \ge 0 \text{ (takes only non-negative values)}$$

$$(\geq) \sum_{x \ge t} x \cdot \mathbb{P}(X = x) \qquad \forall f(x) \ge t \text{ follows by re-arranging terms}$$

$$\geq \sum_{x \ge t} t \cdot \mathbb{P}(X = x) = t \cdot \mathbb{P}(X \ge t) \qquad \text{Follows by re-arranging terms}$$

Example – Binomial Random Variable

Markov's inequality $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}$.

Let X be Binomial RV with parameters. n, p

$$\mathbb{E}(X) = \frac{n}{2}$$

What is the probability that $X \ge \frac{3n}{4}$?

Markov's inequality:
$$\mathbb{P}\left(X \ge \frac{3n}{4}\right) \le \frac{4}{3n} \cdot \frac{n}{2} = \frac{2}{3}$$

Can we do better?

- Joint Continuous Distributions
- Conditional Expectation
 Law of Total Expectation
- Tail Bounds
 - Markov's Inequality
 - Chebyshev's Inequality

Using variance

• If we know more about the random variable, e.g. its variance, we can get a better bound!

Chebyshev's Inequality

Markov's inequality $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}$.

Theorem. Let *X* be a random variable. Then, for any t > 0, $\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}$.

Proof: Define $Z = X - \mathbb{E}(X)$

Definition of Variance

 $\mathbb{P}(|Z| \ge t) = \mathbb{P}(Z^2 \ge t^2) \le \frac{\mathbb{E}(Z^2)}{t^2} \stackrel{\checkmark}{=} \frac{\mathbb{Var}(X)}{t^2}$ $|Z| \ge t \text{ iff } Z^2 \ge t^2 \qquad \text{Markov's inequality } (Z^2 \ge 0)$

Example – Binomial Random Variable

Chebychev's Inequality $\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$

Let X be Binomial RV with parameters. n, p = 0.5

$$\mathbb{E}(X) = \frac{n}{2} \qquad \qquad Var(X) =$$

What is the probability that $X \ge \frac{3n}{4}$?

Chebychev's inequality: $\mathbb{P}\left(X \ge \frac{3n}{4}\right) \le$

Markov's inequality:
$$\mathbb{P}\left(X \ge \frac{3n}{4}\right) \le \frac{4}{3n} \cdot \frac{n}{2} = \frac{2}{3}$$

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

 Usually loose upper-bounds are okay when designing for worstcase

Generally, the more you know about your random variable the better tail bounds you can get.