CSE 312 Foundations of Computing II

Lecture 14: Joint Distributions

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Cartesian Products

- Joint PMFs/PDFs/CDFs and Joint Range
- Independence
- Marginal Distributions
- Expectation
- Joint Continuous Random Variables

Why joint distributions?

- Given all of its user's ratings for different movies, and any preferences you have expressed, Netflix wants to recommend a new movie for you.
- Given a bunch of medical data correlating symptoms and personal history with diseases, predict what is ailing a person with a particular medical history and set of symptoms.
- Given current traffic, pedestrian locations, weather, lights, etc. decide whether a self-driving car should slow down or come to a stop.

Review Cartesian Product (G, b)

Definition. Let *A* and *B* be sets. The **Cartesian product** of *A* and *B* is denoted

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

(P, R)

Example. $A \times B = 6$ {1,2,3} × {4,5} = {(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)}

If A and B are finite sets, then $|A \times B| = |A| \cdot |B|$.

The sets don't need to be finite! You can have $\mathbb{R} \times \mathbb{R}$ (often denoted \mathbb{R}^2)

- Cartesian Products
- Joint PMFs/PDFs/CDFs and Joint Range
- Independence
- Marginal Distributions
- Expectation
- Joint Continuous Random Variables

Joint PMFs and Joint Range

Definition. Let *X* and *Y* be discrete random variables. The **Joint PMF** of *X* and *Y* is $\begin{array}{c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$

n(X): 31,2,33 n(V) 34,53

Definition. The joint range of $p_{X,Y}$ is $\Omega(X,Y) = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega(X) \times \Omega(Y)$

Note that

 $p_{X,Y}(s,t) = 2$

Example: Weird Dice $\mathbb{P}_{X,Y}(1,1) = \mathbb{P}(X=1,Y=1)$ = $\mathbb{P}(X=1)\mathbb{P}(Y=1)$

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die.

$$\Omega(X) = \{1,2,3,4\} \text{ and } \Omega(Y) = \{1,2,3,4\}$$

In this problem, the joint PMF is

$$p_{X,Y}(x,y) = \begin{cases} 1/16, & x, y \in \Omega(X,Y) \\ 0, & \text{otherwise} \end{cases}$$

~ 1	X\Y	1	2	3	4
	1	1/16	1/16	1/16	1/16
	2	1/16	1/16	1/16	1/16
	3	1/16	1/16	1/16	1/16
	4	1/16	1/16	1/16	1/16

and the joint range is (since all combinations have non-zero probability) $\Omega(X, Y) = \Omega(X) \times \Omega(Y)$

- Cartesian Products
- Joint PMFs/PDFs/CDFs and Joint Range
- Independence
- Marginal Distributions
- Expectation
- Joint Continuous Random Variables

Independence

 $\mathbb{P}_{\chi, \gamma} (\chi, \gamma) = \mathbb{P}(\chi = \chi, \gamma = \gamma)$ = $\mathbb{P}(\chi = \chi) \cdot \mathbb{P}(\gamma = \gamma)$

Definition. Let *X* and *Y* be discrete random variables. The **Joint PMF** of *X* and *Y* is

$$p_{X,Y}(a,b) = \Pr(X = a, Y = b)$$

Definition. The **joint range** of $p_{X,Y}$ is $\Omega(X,Y) = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega(X) \times \Omega(Y)$

Definition. X and Y are **independent** iff for all a, b $Pr(X = a, Y = b) = Pr(X = a) \cdot Pr(Y = b)$ $\mathcal{L}_{X,Y} = \mathcal{L}_X X \mathcal{L}_Y$

Example: Weirder Dice

$$(1, 3)$$

 $(3, 1)$

4

2/16

2/16

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$ $\Omega(U) = \{1,2,3,4\}$ and $\Omega(W) = \{1,2,3,4\}$ (1,3)

 $\Omega(U,W) = \{(u,w) \in \Omega(U) \times \Omega(W) : u \le w\} \neq \Omega(U) \times \Omega(W)$

Example: Weirder Dice

Suppose I roll two fair 4-sided die independently. Let *X* be the value of the first die, and *Y* be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$ $\Omega(U) = \{1,2,3,4\}$ and $\Omega(W) = \{1,2,3,4\}$

$$\Omega(U, W) = \{(u, w) \in \Omega(U) \times \Omega(W) : u \le w\} \neq \Omega(U) \times \Omega(W)$$

w) is	U\W	1	2	3	4
here $w > u$	1	1/16	2/16	2/16	2/16
here $w = u$	2	0	1/16	2/16	2/16
erwise	3	0	0	1/16	2/16
	4	0	0	0	1/16

The joint PMF
$$p_{U,W}(u, w) = Pr(U = u, W = w)$$
 is

$p_{IIW}(u,w) = \cdot$	(2/16,	$(u, w) \in \Omega(U) \times \Omega(W)$ $(u, w) \in \Omega(U) \times \Omega(W)$	where $w > w$ where $w = w$
	0,		otherwise

- Cartesian Products
- Joint PMFs/PDFs/CDFs and Joint Range
- Independence
- Marginal Distributions
- Expectation
- Joint Continuous Random Variables

Example: Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$

Example: Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$

Suppose we didn't know how to compute Pr(U = u) directly. Can we figure it out if we know $p_{U,W}(u, w)$?

$$p_U(u) = \begin{cases} 7/16, & u = 1\\ 5/16, & u = 2\\ 3/16, & u = 3\\ 1/16, & u = 4 \end{cases}$$

$$TP_{U}(3) = \sum_{w \in S(u)} P_{v,w}(3,w)$$

$$w \in S(u) = P_{v,w}(3,1) + \cdots$$

U\W	1	2	3	4
1	1/16	2/16	2/16	2/16
2	0	1/16	2/16	2/16
3	0	(o)	1/16	2/16
4	0	0	0	1/16

Marginal PMF

Marginal PMF Example

Suppose the table below gives us the joint pmf of X and Y.

What is the marginal pmf of X? What is the marginal pmf of Y? Are X and Y independent? 2

$$P_{x}(x) = \sum_{y \in \mathcal{R}_{y}} P_{x,y}(x,y)$$

$$P_{x}(1) = P_{x,y}(1,1) + P_{x,y}(1,2)$$

$$P_{X}(z) = P_{X,Y}(2,1) + P_{X,Y}(2,2)$$

$$O_{1} = O_{1} - V_{1}$$

- Cartesian Products
- Joint PMFs/PDFs/CDFs and Joint Range
- Independence
- Marginal Distributions
- Expectation
- Joint Continuous Random Variables

Joint Expectation

Definition. Let *X* and *Y* be discrete random variables and $p_{X,Y}(a, b)$ their joint PMF. The **expectation** of some function g(x, y) with inputs *X* and *Y*

Expectation Example

Suppose the table below gives us the joint pmf of X and Y.

g(x, v) : XYWhat is E(XY)? $E[YY] : \sum_{x \in \mathcal{N}_{x}} \sum_{y \in \mathcal{R}_{y}} g(x, y) P_{x, y}(x, y)$

$$= 1 \cdot 1 \cdot 0.4 = 0.4 = 0.2 = 0.2 = 1.6$$

$$= 1 \cdot 2 \cdot 0.1 = 2.4$$

$$= 2 \cdot 1 \cdot 0.1 = 2.4$$

- Suppose the number of requests Z to a particular web server per hour is Poisson(λ). And that the request comes from within the US with probability p.
- Let X be the number of requests per hour from the US and let Y be the number of requests per hour from outside the US. What is the joint pmf of X and Y? Are they independent?

- Cartesian Products
- Joint PMFs/PDFs/CDFs and Joint Range
- Independence
- Marginal Distributions
- Expectation
- Joint Continuous Random Variables

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$	$f_{X,Y}(x,y) \neq \mathbb{P}(X=x,Y=y)$
Joint range/support		
$\Omega_{X,Y}$	$\{(x,y)\in\Omega_X\times\Omega_Y:p_{X,Y}(x,y)>0\}$	$\{(x,y)\in\Omega_X\times\Omega_Y:f_{X,Y}(x,y)>0\}$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x, s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x,y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_y p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$

Independence (continuous random variables)

Definition. Let *X* and *Y* be continuous random variables. The **joint pdf** of *X* and *Y* is

$$f_{X,Y}(a,b) \neq \Pr(X=a,Y=b)$$

Definition. The **joint range** of $p_{X,Y}$ is $\Omega(X,Y) = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega(X) \times \Omega(Y)$

Definition. *X* and *Y* are **independent** iff for all *a*, *b* $f_{X,Y}(a, b) = f_X(a) \cdot f_Y(b)$ Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.

– What is their joint density f(x,y)?

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
 - What is the range of X & Y and the marginal density of X and of Y?

Poll:
What is
$$\Omega_X$$
?
a. $[-\sqrt{R^2 - x^2}, \sqrt{R^2 - x^2}]$
b. $[-R, R]$
c. $[-\sqrt{R^2 - y^2}, \sqrt{R^2 - y^2}]$
d. Not sure

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
 - Are X and Y independent?

Ро	ll:
Are	e X and Y independent?
a.	yes
b.	no

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
 - What is E(Z)?

All of this generalizes to more than 2 random variables

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$	$f_{X,Y}(x,y) \neq \mathbb{P}(X=x,Y=y)$
Joint range/support		
$\Omega_{X,Y}$	$\{(x,y)\in\Omega_X\times\Omega_Y:p_{X,Y}(x,y)>0\}$	
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x, s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x,y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_y p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$