CSE 312
 Foundations of Computing II

Lecture 14: Joint Distributions

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Agenda

- Cartesian Products
- Joint PMFs/PDFs/CDFs and Joint Range
- Independence
- Marginal Distributions
- Expectation
- Joint Continuous Random Variables

Why joint distributions?

- Given all of its User's ratings for different movies, and any preferences you have expressed,', Netflix wants to recommend a new movie for you.

7

- Given a bunch of medical data correlating symptoms and personal history with diseases, predict what is ailing a person with a particular medical history and set of symptoms.
- Given current traffic, pedestrian locations, weather, lights, etc. decide whether a self-driving car should slow down or come to a stop.

Review Cartesian Product

Definition. Let A and B be sets. The Cartesian product of A and B is denoted

$$
A \times B=\left\{(a, b): a \varrho_{\natural}^{\kappa} A, b \in B\right\}
$$

Example. $\stackrel{A}{d} \quad \stackrel{B}{d} \quad|A \times B|=6$

$$
\frac{\{1,2,3\}}{\| A=3} \times \frac{\{4,5\}}{\mid B-2}=\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}
$$

If A and B are finite sets, then $|A \times B|=|A| \cdot|B|$.
The sets don't need to be finite! You can have $\frac{\mathbb{R} \times \mathbb{R}\left(\text { often denoted } \mathbb{R}^{2}\right)}{L^{\swarrow}}$

Agenda

- Cartesian Products
- Joint PMFs/PDFs/CDFs and Joint Range
- Independence
- Marginal Distributions
- Expectation
- Joint Continuous Random Variables

Joint PMFs and Joint Range

$\Omega(x):\{1,2,3\}$
$\Omega(y)\{4,5\}$
Definition. Let X and Y be discrete random variables. The Joint PMF of X and Y is

$$
\stackrel{\left.\stackrel{\downarrow}{p_{X, Y}(a, b}\right)}{\underline{b}} \mathbf{\operatorname { P r } (X \stackrel { \checkmark } { = } , Y = b)}
$$

Definition. The joint range of $p_{X, Y}$ is

$$
\left.\underline{\Omega(X, Y})=\left\{\underline{(c, d)} \underline{c}^{4}\right): \underline{p_{X, Y}}(c, d)>0\right\} \subseteq \Omega(X) \times \Omega(Y)
$$

Note that

Example: Weird Dice $P_{x, y}(1,1)=\mathbb{P}(x=1, y=1)$

$$
=\mathbb{T}(x=1) \pi(/=1)=\frac{1}{4}
$$

Suppose I roll two fair 4 -sided die independently. Let X be the value of the first die, and Y be the value of the second die.

$$
\underline{\Omega(X)}=\{\underline{1,2,3,4} \mathbf{\}} \text { and } \underline{\Omega(Y)}=\{\underline{1,2,3,4\}}
$$

In this problem, the joint PMF is

$$
p_{X, Y}(x, y)=\left\{\begin{array}{cc}
1 / 16, & x, y \in \Omega(X, Y) \\
0, & \text { otherwise }
\end{array}\right.
$$

and the joint range is (since all combinations have non-zero probability) $\Omega(X, Y)=\Omega(X) \times \Omega(Y)$

Agenda

- Cartesian Products
- Joint PMFs/PDFs/CDFs and Joint Range
- Independence
- Marginal Distributions
- Expectation
- Joint Continuous Random Variables

Independence $\quad \begin{aligned} \quad \mathbb{T}_{X, Y}(X, Y) & =\mathbb{P}(X=x, Y=y) \\ & =\mathbb{P}(X: x) \cdot \mathbb{P}(Y=y)\end{aligned}$
Definition. Let X and Y be discrete random variables. The Joint PMF of X and Y is

$$
p_{X, Y}(a, b)=\operatorname{Pr}(X=a, Y=b)
$$

Definition. The joint range of $p_{X, Y}$ is

$$
\Omega(X, Y)=\left\{(c, d): p_{X, Y}(c, d)>0\right\} \subseteq \Omega(X) \times \Omega(Y)
$$

Definition. X and Y are independent iff for all a, b

$$
\operatorname{Pr}(X=a, Y=b)=\operatorname{Pr}(X=a) \cdot \operatorname{Pr}(Y=b) \quad \Omega_{x, y}=\Omega_{x} X \Omega_{y}
$$

Example: Weirder Dice $\quad(1,3)$

Suppose I roll two fair 4 -sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$

$$
\begin{aligned}
& \Omega(U)=\{1,2,3,4\} \text { and } \Omega(W)=\{1,2,3,4\} \quad\left(\begin{array}{c}
u, \\
v \\
v \\
w
\end{array}\right. \\
& \frac{\Omega(U, W)}{\zeta}=\left\{\left(\frac{u, w)}{\prec}\right) \in \Omega(U) \times \Omega(W): u \leq w\right\} \neq \Omega(U) \times \Omega(W)
\end{aligned}
$$

Example: Weirder Dice

Suppose I roll two fair 4 -sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$
$\Omega(U)=\{1,2,3,4\}$ and $\Omega(W)=\{1,2,3,4\}$
$\Omega(U, W)=\{(u, w) \in \Omega(U) \times \Omega(W): u \leq w\} \neq \Omega(U) \times \Omega(W)$

The joint PMF $p_{U, W}(u, w)=\operatorname{Pr}(U=u, W=w)$ is
$p_{U, W}(u, w)=\left\{\begin{array}{rc}2 / 16, & (u, w) \in \Omega(U) \times \Omega(W) \\ 1 / 16, & (u, w) \in \Omega(U) \times \Omega(W) \\ 0, & \text { where } w>u \\ 0, & \text { otherwise }=u\end{array}\right.$

Ulw	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

Agenda

- Cartesian Products
- Joint PMFs/PDFs/CDFs and Joint Range
- Independence
- Marginal Distributions
- Expectation
- Joint Continuous Random Variables

Example: Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$

Suppose we didn't know how to compute $\operatorname{Pr}_{\varepsilon_{1}}(U=u)$ directly. Can we figure it out if we know $p_{U, W}(u, w)$? $\quad \mathbb{P}(u=2)=\sum_{\omega=1} \mathbb{P}(u=2 n w=\omega)$

Ulw	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

Example: Weirder Dice

Suppose I roll two fair 4 -sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$

Suppose we didn't know how to compute $\operatorname{Pr}(U=u)$ directly. Can we figure it out if we know $p_{U, W}(u, w)$?

$$
\begin{aligned}
& p_{U}(u)= \begin{cases}7 / 16, & u=1 \\
5 / 16, & u=2 \\
3 / 16, & u=3 \\
1 / 16, & u=4\end{cases} \\
& \mathbb{P}_{u}(3)=\sum_{w \in \Omega(w)=P_{v, \omega}(3, w)}(3,1)+\ldots
\end{aligned}
$$

Uaw	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

Marginal PMF

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The marginal PMF of X

$$
p_{X}(a)=\sum_{\underline{b \in \Omega(Y)}} p_{X, Y}(a, b)
$$

Similarly, $p_{Y}(b)=\sum_{a \in \Omega(X)} p_{X, Y}(a, b)$

Marginal PMF Example

Suppose the table below gives us the joint mf of X and Y .

What is the marginal mf of X ? What is the marginal mf of Y ?
Are X and Y independent?

$$
\begin{aligned}
& P_{x}(x)=\sum_{y \in \Omega_{y}} P_{x, y}(x, y) \\
& P_{x}(1)=P_{x, y}(1,1)+P_{x, y}(1,2) \\
& 0,5
\end{aligned}
$$

$$
\begin{array}{rl}
P_{x}(2) & =P_{x, y}(2,1)+P_{x, y}(2,2) \\
0.1 & 0.0-4 \\
& =0.5
\end{array}
$$

Agenda

- Cartesian Products
- Joint PMFs/PDFs/CDFs and Joint Range
- Independence
- Marginal Distributions
- Expectation
- Joint Continuous Random Variables

Joint Expectation

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The expectation of some function $g(x, y)$ with inputs X and Y

$$
\begin{aligned}
& E[g(X, Y)]=\sum_{\substack{a \in \Omega(X)}} g(a, b) p_{X, Y}(a, b) \\
& \overline{\bar{c}}\left[g(x)=\sum_{r \in \Omega_{x}} g(x) \cdot \mathbb{P}(x=r)\right.
\end{aligned}
$$

Expectation Example

Suppose the table below gives us the joint mf of X and Y.

$$
\begin{aligned}
& \text { What is } E(X Y) ? \\
& \begin{aligned}
& E[X Y]: \sum_{x \in \Omega_{x}} \sum_{y \in \Omega y} g(x, 1): x y \\
&=1 \cdot 1 \cdot 0.4=0.4+0.2+0.2+1.6 \\
&+1 \cdot 2 \cdot 0.1 \\
&+2 \cdot 1 \cdot 0.1 \\
&+2 \cdot 2 \cdot 0.7
\end{aligned}
\end{aligned}
$$

- Suppose the number of requests Z to a particular web server per hour is Poisson(λ). And that the request comes from within the US with probability p.
- Let X be the number of requests per hour from the US and let Y be the number of requests per hour from outside the US. What is the joint pmf of X and Y ? Are they independent?
- Cartesian Products
- Joint PMFs/PDFs/CDFs and Joint Range
- Independence
- Marginal Distributions

- Expectation
- Joint Continuous Random Variables

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y)$	$f_{X, Y}(x, y) \neq \mathbb{P}(X=x, Y=y)$
Joint range/support	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: p_{X, Y}(x, y)>0\right\}$	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: f_{X, Y}(x, y)>0\right\}$
$\Omega_{X, Y}$	$\left\{(x, y)(x, y)=\sum_{t \leq x, s \leq y} p_{X, Y}(t, s)\right.$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Joint CDF	$F_{X, Y}$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Normalization	$\sum_{x, y} p_{X, Y}(x, y)=1$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$\mathbb{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Expectation	$\mathbb{E}[g(X, Y)]=\sum_{x, y} g(x, y) p_{X, Y}(x, y)$	

Independence (continuous random variables)

Definition. Let X and Y be continuous random variables. The joint pdf of X and Y is

$$
f_{X, Y}(a, b) \neq \operatorname{Pr}(X=a, Y=b)
$$

Definition. The joint range of $p_{X, Y}$ is

$$
\Omega(X, Y)=\left\{(c, d): p_{X, Y}(c, d)>0\right\} \subseteq \Omega(X) \times \Omega(Y)
$$

Definition. X and Y are independent iff for all a, b
$f_{X, Y}(a, b)=f_{X}(a) \cdot f_{Y}(b)$

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- What is their joint density $f(x, y)$?

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- What is the range of $X \& Y$ and the marginal density of X and of Y ?


```
Poll:
What is \mp@subsup{\Omega}{X}{}}\mathrm{ ?
a. }[-\sqrt{}{\mp@subsup{R}{}{2}-\mp@subsup{x}{}{2}},\sqrt{}{\mp@subsup{R}{}{2}-\mp@subsup{x}{}{2}}
b. [-R,R]
c. [-\sqrt{}{\mp@subsup{R}{}{2}-\mp@subsup{y}{}{2}},\sqrt{}{\mp@subsup{R}{}{2}-\mp@subsup{y}{}{2}}]
d. Not sure
```

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- Are X and Y independent?


```
Poll:
Are }X\mathrm{ and }Y\mathrm{ independent?
a. yes
b. no
```

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- What is $E(Z)$?

All of this generalizes to more than 2 random variables

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y)$	$f_{X, Y}(x, y) \neq \mathbb{P}(X=x, Y=y)$
Joint range/support	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: p_{X, Y}(x, y)>0\right\}$	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: f_{X, Y}(x, y)>0\right\}$
$\Omega_{X, Y}$	$F_{X, Y}(x, y)=\sum_{t \leq x, s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Joint CDF	$\sum_{x, y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Normalization	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Marginal PMF/PDF	$\mathbb{E}[g(X, Y)]=\sum_{x, y} g(x, y) p_{X, Y}(x, y)$	$\mathbb{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Expectation		

