CSE 312 Foundations of Computing II

Lecture 13: Continuous RVs and the Exponential Distribution

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Agenda

- Continuous RVs
 - Cumulative Distribution Function
 - Expectation and Variance
- Exponential Distribution
- Time permitting: Memorylessness

Definition. A continuous random variable *X* is defined by a probability density function (PDF) $f_X : \mathbb{R} \to \mathbb{R}$, such that

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$ $P(a \le X \le b) = \int^b f_X(x) \, \mathrm{d}x$ $P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) \, dx = 0$ $P(X \approx y) \approx P\left(y - \frac{\epsilon}{2} \le X \le y + \frac{\epsilon}{2}\right) = \int_{y - \frac{\epsilon}{2}}^{y + \frac{\epsilon}{2}} f_X(x) \, \mathrm{d}x \approx \epsilon f_X(y)$ $\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_X(y)}{\epsilon f_X(z)} = \frac{f_X(y)}{f_X(z)}$

Agenda

- Continuous RVs
 - Cumulative Distribution Function
 - Expectation and Variance
- Exponential Distribution
- Time permitting: Memorylessness

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is $F_X(a) = \mathbb{P}(X \le a) = \int_{-\infty}^a f_X(x) \, \mathrm{d}x$

By the fundamental theorem of Calculus $f_X(x) = \frac{d}{dx}F(x)$ $F_X(b) - F_X(a)$ $f_X(x)$ $f_X(x) = \int f_X(x) dx$ $\int f_X(x) dx$ $f_X(x) dx$ $f_X(x) = \int f_X(x) dx$ $f_X(x) dx$ $f_X(x) dx$ $f_X(x) = \int f_X(x) dx$ $f_X(x) dx$ f

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is $F_X(a) = \mathbb{P}(X \le a) = \int_{-\infty}^a f_X(x) \, \mathrm{d}x$

By the fundamental theorem of Calculus $f_X(x) = \frac{a}{dx}F(x)$

Therefore: $\mathbb{P}(X \in [a, b]) = F(b) - F(a)$

 F_X is monotone increasing, since $f_X(x) \ge 0$. That is $F_X(c) \le F_X(d)$ for $c \le d$

 $\lim_{a \to -\infty} F_X(a) = P(X \le -\infty) = 0 \quad \lim_{a \to +\infty} F_X(a) = P(X \le +\infty) = 1$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_X(x) = P(X = x)$	$f_X(x) \neq P(X = x) = 0$
CDF	$F_X(x) = \sum_{t \le x} p_X(t)$	$F_{X}(x) = \int_{-\infty}^{x} f_{X}(t) dt$
Normalization	$\sum_{x} p_X(x) = \overline{1}$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$
Expectation	$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$

Agenda

- Continuous RVs
 - Cumulative Distribution Function
 - Expectation and Variance
- Exponential Distribution
- Time permitting: Memorylessness

Expectation of a Continuous RV

Uniform Distribution

Uniform Density – Expectation

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, \mathrm{d}x$$

Uniform Density – Expectation

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

$$E(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx$$

= $\frac{1}{b-a} \int_a^b x \, dx = \frac{1}{b-a} \left(\frac{x^2}{2}\right) \Big|_a^b = \frac{1}{b-a} \left(\frac{b^2 - a^2}{2}\right)$
= $\frac{(b-a)(a+b)}{2(b-a)} = \frac{a+b}{2}$

Uniform Density – Variance

$$\mathbb{E}(X^2) = \int_{-\infty}^{+\infty} f_X(x) \cdot x^2 \, \mathrm{d}x$$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

Uniform Density – Variance

$$\mathbb{E}(X^2) = \int_{-\infty}^{+\infty} f_X(x) \cdot x^2 \, \mathrm{d}x$$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

$$= \frac{1}{b-a} \int_{a}^{b} x^{2} dx = \frac{1}{b-a} \left(\frac{x^{3}}{3}\right) \Big|_{a}^{b} = \frac{b^{3}-a^{3}}{3(b-a)}$$
$$= \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)} = \frac{b^{2}+ab+a^{2}}{3}$$

Uniform Density – Variance

$$\mathbb{E}(X^2) = \frac{b^2 + ab + a^2}{3}$$
 $\mathbb{E}(X) = \frac{a+b}{2}$

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

= $\frac{b^2 + ab + a^2}{3} - \frac{a^2 + 2ab + b^2}{4}$
= $\frac{4b^2 + 4ab + 4a^2}{12} - \frac{3a^2 + 6ab + 3b^2}{12}$
= $\frac{b^2 - 2ab + a^2}{12} = \frac{(b - a)^2}{12}$

Uniform Distribution

Review – Continuous RVs

Density ≠ Probability !

$$\mathbb{P}(X \in [a, b]) = \int_{a}^{b} f_{X}(x) dx$$
$$= F_{X}(b) - F_{X}(a)$$

 $F(y) = \mathbb{P}(X \le y)$

Expectation of a Continuous RV

Definition. The **expected value** of a continuous RV *X* is defined as $\mathbb{E}(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, \mathrm{d}x$ Fact. $\mathbb{E}(aX + bY + c) = a\mathbb{E}(X) + b\mathbb{E}(Y) + c$ **Definition.** The **variance** of a continuous RV X is defined as $\operatorname{Var}(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot \left(x - \mathbb{E}(X)\right)^2 dx = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Agenda

- Continuous RVs
 - Cumulative Distribution Function
 - Expectation and Variance
- Exponential Distribution
- Time permitting: Memorylessness

Exponential Density

Assume expected # of occurrences of an event per unit of time is λ

- Cars going through intersection
- Number of lightning strikes
- Requests to web server
- Patients admitted to ER

Numbers of occurrences of event: Poisson distribution

$$\mathbb{P}(X = i) = e^{-\lambda} \frac{\lambda^{i}}{i!} \qquad \text{(Discrete)}$$

How long to wait until next event? Exponential density!

Let's define it and then derive it!

Poi Exp

The Exponential PDF/CDF

Assume expected # of occurrences of an event per unit of time is λ **Numbers of occurrences of event:** Poisson distribution **How long to wait until next event?** <u>Exponential density!</u>

- The exponential RV has range $[0, \infty]$, unlike Poisson with range $\{0, 1, 2, ...\}$
- Let $Y \sim Exp(\lambda)$ be the time till the first event. We will compute $F_Y(t)$ and $f_Y(t)$ $\bigvee \sim Exp(\lambda)$

Assume expected # of occurrences of an event per unit of time is λ **Numbers of occurrences of event:** Poisson distribution **How long to wait until next event?** <u>Exponential density!</u>

The Exponential PDF/CDF (5)

2:5

3.5=15

Pos (15)

- The exponential RV has range $[0, \infty]$, unlike Poisson with range $\{0, 1, 2, ...\}$
- Let $Y \sim Exp(\lambda)$ be the time till the first event. We will compute $F_Y(t)$ and $f_Y(t)$
- Let $X \sim Poi(t\lambda)$ be the # of events in the first t units of time, for $t \ge 0$.
- $P(Y > t) = P(no \text{ event in the first t units}) = P(X = 0) = e^{-t\lambda} \frac{t\lambda^0}{0!} = e^{-t\lambda}$ • $F_Y(t) = 1 - P(Y > t) = 1 - e^{-t\lambda}$ • $f_Y(t) = \frac{d}{dt} F_Y(t) = \lambda e^{-t\lambda}$

Exponential Distribution

Definition. An **exponential random variable** *X* with parameter $\lambda \ge 0$ is follows the exponential density

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

We write $X \sim \text{Exp}(\lambda)$ and say X that follows the exponential distribution.

CDF: For $y \ge 0$, $F_X(y) = 1 - e^{-\lambda y}$ $\lambda = 1.5$ $\lambda = 1.5$ $\lambda = 1.5$ $\lambda = 1.5$ $\lambda = 0.5$ $\lambda = 0.5$

Expectation

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, \mathrm{d}x$$

Expectation

$$\lambda = 3$$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$E(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx$$
$$= \int_{0}^{+\infty} \lambda e^{-\lambda x} \cdot x \, dx$$
$$= \left(-(x + \frac{1}{\lambda})e^{-\lambda x} \right) \Big|_{0}^{\infty} =$$

Somewhat complex calculation use integral by parts

$$\mathbb{E}(X) = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins.

$$\chi_{\lambda} E_{\gamma}(\overline{t})$$
 $E[X] = 10 = \frac{1}{\lambda}$

 $\Psi(10 \leq X \leq 20) = F_X(20) - F_X(10) =$

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$T \sim Exp(\frac{1}{10})$$

$$P(10 \le T \le 20) = \int_{10}^{20} \frac{1}{10} e^{-\frac{x}{10}} dx$$

$$y = \frac{x}{10}, dy = \frac{dx}{10}$$

$$P(10 \le T \le 20) = \int_{1}^{2} e^{-y} dy = -e^{-y} \Big|_{1}^{2} = e^{-1} - e^{-2}$$

Agenda

- Continuous RVs
 - Cumulative Distribution Function
 - Expectation and Variance
- Exponential Distribution
- Time permitting: Memorylessness

Memorylessness

Definition. A random variable is **memoryless** if for all s, t > 0, $\mathbb{P}(X > s + t | X > s) = \mathbb{P}(X > t).$

Fact. $X \sim \text{Exp}(\lambda)$ is memoryless.

Assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as s = 0

Memorylessness of Exponential

Assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as s = 0

Fact. $X \sim \text{Exp}(\lambda)$ is memoryless.

Proof.

 $\mathbb{P}(X > s + t \mid X > s)$

Memorylessness of Exponential

Assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as s = 0

Fact. $X \sim \text{Exp}(\lambda)$ is memoryless.

Proof.

$$\mathbb{P}(X > s + t \mid X > s) = \frac{\mathbb{P}(\{X > s + t\} \cap \{X > s\})}{\mathbb{P}(X > s)}$$
$$= \frac{\mathbb{P}(X > s + t)}{\mathbb{P}(X > s)}$$
$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = \mathbb{P}(X > t)$$

The only memoryless RVs are the geometric RV (discrete) and Exp RV (continuous)