CSE 312
 Foundations of Computing II

Lecture 13: Continuous RVs and the Exponential Distribution

WPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Agenda

- Continuous RVs
- Cumulative Distribution Function
- Expectation and Variance
- Exponential Distribution
- Time permitting: Memorylessness

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$

$$
\begin{aligned}
& P(\underline{a \leq X \leq b})=\int_{a}^{b} f_{X}(x) \mathrm{d} x \\
& P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0
\end{aligned}
$$

$$
P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y-\frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y)
$$

$$
\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}
$$

Agenda

- Continuous RVs
- Cumulative Distribution Function
- Expectation and Variance
- Exponential Distribution
- Time permitting: Memorylessness

Example. $T \sim \operatorname{Unif}(0,1)$

Probability Density Function

$$
f_{T}(x)= \begin{cases}\mathbb{1} & x \in[0,1] \\ \mathbb{心} & x \neq[0,1]\end{cases}
$$

Cumulative Distribution Function

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=\mathbb{P}(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F(x)$

$$
\begin{aligned}
& F_{x}(b)-F_{x}(a) \quad f_{x}(x \\
& \int_{-\infty}^{b} f_{x}(x) d x-\int_{-\infty} f_{x}(x) d x
\end{aligned}
$$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=\mathbb{P}(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F(x)$
Therefore: $\mathbb{P}(X \in[a, b])=F(b)-F(a)$

F_{X} is monotone increasing, since $f_{X}(x) \geq 0$. That is $F_{X}(c) \leq F_{X}(d)$ for $c \leq d$
$\operatorname{Lim}_{a \rightarrow-\infty} F_{X}(a)=P(X \leq-\infty)=0 \quad \operatorname{Lim}_{a \rightarrow+\infty} F_{X}(a)=P(X \leq+\infty)=\frac{1}{7}$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$
Expectation	$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Agenda

- Continuous RVs
- Cumulative Distribution Function
- Expectation and Variance
- Exponential Distribution
- Time permitting: Memorylessness

Expectation of a Continuous RV

Definition. The expected value of a continuous $\mathrm{RV} X$ is defined as

$$
\underset{\mathrm{E}}{\mathbb{E}(X)}=\int_{-\infty}^{+\infty} f_{X}(x) \cdot(x) \mathrm{d} x
$$

Fact. $\mathbb{E}(a X+b Y+c)=a \mathbb{E}(X)+b \mathbb{E}(Y)+c$

$$
E[g(x)]
$$

Definition. The variance of a continuous $\mathrm{RV} X$ is defined as

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot(x-\mathbb{E}(X))^{2} \mathrm{~d} x=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}
$$

Uniform Distribution

$X \sim \operatorname{Unif}(a, b)$

$$
b^{2} \cdot a^{2}
$$

$$
(\overline{b-c})^{2}
$$

$0 \longrightarrow$

We also say that X follows the uniform distribution / is uniformly distributed

$$
\frac{f_{X}(x)}{\zeta}=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Definition.

$$
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

$$
\begin{aligned}
& E[x]=\int_{-\infty}^{\infty} f x(x) x d x=\int_{a}^{b} \frac{1}{b-a} x d x \\
& =\frac{1}{b-a} \int_{a}^{b} x d x=\frac{1}{b-a}\left[\frac{x^{2}}{2}\right]_{a}^{b}=\frac{1}{b-a}\left(\frac{b^{2}}{2}-\frac{a^{2}}{2}\right)
\end{aligned}
$$

Uniform Density - Expectation

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& \mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
\end{aligned}
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\frac{1}{0.5-0}=\frac{1}{0.3}=2
$$

Uniform Density - Expectation

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

$$
\begin{gathered}
=\frac{1}{b-a} \int_{a}^{b} x \mathrm{~d} x= \\
\left.\frac{1}{b-a}\left(\frac{x^{2}}{2}\right)\right|_{a} ^{b}=\frac{1}{b-a}\left(\frac{b^{2}-a^{2}}{2}\right) \\
=\frac{(b-a)(a+b)}{2(b-a)}=\frac{a+b}{2}
\end{gathered}
$$

Uniform Density - Variance

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& \mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x^{2} \mathrm{~d} x
\end{aligned}
$$

Uniform Density - Variance

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x^{2} \mathrm{~d} x
$$

$$
=\frac{1}{b-a} \int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{3}}{3}\right)\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)}
$$

$$
=\frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
$$

Uniform Density - Variance

$$
\mathbb{E}\left(X^{2}\right)=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}(X)=\underline{a+b}
$$

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =\frac{\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}}{b^{2}+a b+a^{2}} \\
& =\frac{a^{2}+2 a b+b^{2}}{4} \\
& =\frac{4 b^{2}+4 a b+4 a^{2}}{12}-\frac{3 a^{2}+6 a b+3 b^{2}}{12} \\
& =\frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

Uniform Distribution

$X \sim \operatorname{Unif}(a, b)$
We also say that X follows the uniform distribution / is

Review - Continuous RVs

Probability Density Function (PDF).
$f: \mathbb{R} \rightarrow \mathbb{R}$ s.t.

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{+\infty} f(x) \mathrm{d} x=1$

Density \neq Probability !

$$
\begin{array}{rlrl}
\mathbb{P}(X \in[a, b]) & =\int_{a}^{b} f_{X}(x) \mathrm{d} x & & F(y)=\mathbb{P}(X \leq y) \\
& =F_{X}(b)-F_{X}(a) &
\end{array}
$$

Cumulative Density Function (CDF).

$$
F(y)=\int_{-\infty}^{y} f(x) \mathrm{d} x
$$

Expectation of a Continuous RV

Definition. The expected value of a continuous $\mathrm{RV} X$ is defined as

$$
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}(a X+b Y+c)=a \mathbb{E}(X)+b \mathbb{E}(Y)+c$

Definition. The variance of a continuous $\mathrm{RV} X$ is defined as

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot(x-\mathbb{E}(X))^{2} \mathrm{~d} x=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}
$$

Agenda

- Continuous RVs
- Cumulative Distribution Function
- Expectation and Variance
- Exponential Distribution

- Time permitting: Memorylessness

Exponential Density

Assume expected \# of occurrences of an event per unit of time is λ

- Cars going through intersection
- Number of lightning strikes
- Requests to web server
- Patients admitted to ER

Numbers of occurrences of event: Poisson distribution

$$
\begin{equation*}
\mathbb{P}(X=i)=e^{-\lambda} \frac{\lambda^{i}}{i!} \tag{Discrete}
\end{equation*}
$$

How long to wait until next event? Exponential density!
Let's define it and then derive it!

The Exponential PDF/CDF

Assume expected \# of occurrences of an event per unit of time is λ
Numbers of occurrences of event: Poisson distribution
How long to wait until next event? Exponential density!

- The exponential RV has range $[0, \infty]$, unlike Poisson with range $\{0,1,2, \ldots\}$
- Let $Y \sim \operatorname{Exp}(\lambda)$ be the time till the first event. We will compute $F_{Y}(t)$ and $f_{Y}(t)$

Y~Exp (λ)

$\lambda=5$
 The Exponential PDF/CDF Po:(s)

Assume expected \# of occurrences of an event per unit of time is λ
Numbers of occurrences of event: Poisson distribution

How long to wait until next event? Exponential density!

- The exponential RV has range $[0, \infty]$, unlike Poisson with range $\{0,1,2, \ldots\}$
- Let $Y \sim \operatorname{Exp}(\lambda)$ be the time till the first event. We will compute $F_{Y}(t)$ and $f_{Y}(t)$
- Let $\mathrm{X} \sim \underline{\operatorname{Poi}(t \lambda)}$ be the \# of events in the first t units of time, for $t \geq 0$.
- $\mathrm{P}(\mathrm{Y}>\mathrm{t})=P($ no event in the first t units $)=P(X=0)=e^{-t \lambda \frac{t \lambda^{0}}{0!}}=e^{-t \lambda}$ $=\pi(y \leq t)$
- $\mathrm{F}_{\mathrm{Y}}(\mathrm{t}) \stackrel{=\pi(Y \leq t)}{=} 1-P(Y>t)=\sqrt{1-e^{-t \lambda}}$
- $\mathrm{f}_{\mathrm{Y}}(\mathrm{t})=\frac{d}{d t} F_{Y}(t)=\lambda e^{-t \lambda}$

Exponential Distribution

Definition. An exponential random variable X with parameter $\lambda \geq 0$ is follows the exponential density

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

We write $X \sim \operatorname{Exp}(\lambda)$ and say X that follows the exponential distribution.

$$
\begin{aligned}
& \text { CDF: For } y \geq 0, \\
& F_{X}(y)=1-e^{-\lambda y}
\end{aligned}
$$

Expectation

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

$$
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Expectation $\quad \lambda=5$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

$$
\begin{aligned}
\mathbb{E}(X) & =\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x & \frac{H}{H} & \\
& =\int_{0}^{+\infty} \lambda e^{-\lambda x} \cdot x \mathrm{~d} x & \frac{1}{5} & \\
& =\left.\left(-\left(x+\frac{1}{\lambda}\right) e^{-\lambda x}\right)\right|_{0} ^{\infty}=\frac{1}{\lambda} & & \\
& & &
\end{aligned}
$$

Somewhat complex calculation use integral by parts

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 ming.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins.

$$
\begin{aligned}
& X \sim \operatorname{Exp}\left(\frac{1}{10}\right) \quad E[x]=10=\frac{1}{\lambda} \\
& \mathbb{P}(10 \leq x \leq 20)=F_{x}(20)-F_{x}(10)=
\end{aligned}
$$

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$
\begin{aligned}
& T \sim \operatorname{Exp}\left(\frac{1}{10}\right) \\
& P(10 \leq T \leq 20)=\int_{10}^{20} \frac{1}{10} e^{-\frac{x}{10}} d x \\
& y=\frac{x}{10}, d y=\frac{d x}{10} \\
& P(10 \leq T \leq 20)=\int_{1}^{2} e^{-y} d y=-\left.e^{-y}\right|_{1} ^{2}=e^{-1}-e^{-2}
\end{aligned}
$$

Agenda

- Continuous RVs
- Cumulative Distribution Function
- Expectation and Variance
- Exponential Distribution
- Time permitting: Memorylessness

Memorylessness

Definition. A random variable is memoryless if for all $s, t>0$,

$$
\mathbb{P}(X>s+t \mid X>s)=\mathbb{P}(X>t) .
$$

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.

Assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as $s=0$

Memorylessness of Exponential

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.
Proof.

$$
\mathbb{P}(X>s+t \mid X>s)
$$

Memorylessness of Exponential

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.

Proof.

$$
\begin{aligned}
\mathbb{P}(X>s+t \mid X>s) & =\frac{\mathbb{P}(\{X>s+t\} \cap\{X>s\})}{\mathbb{P}(X>s)} \\
& =\frac{\mathbb{P}(X>s+t)}{\mathbb{P}(X>s)} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=\mathbb{P}(X>t)
\end{aligned}
$$

The only memoryless RVs are the geometric RV (discrete) and Exp RV (continuous)

