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Lecture 12: Continuous Random Variables
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Slide Credit: Based on Stefano Tessaro’s slides for 312 19au 

incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & myself ☺

Aleks Jovcic



Agenda

• Poisson RV

• Continuous Random Variables

• Probability Density Function 

• Cumulative Distribution Function

• Expectation and Variance
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Poisson Distribution

• Suppose “events” happen, independently, at an average rate of λ per 
unit time.

• Let X be the actual number of events happening in a given time 
unit. Then X is a Poisson r.v. with parameter λ (denoted X ~ Poi(λ)) 
and has distribution (PMF):
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ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!

Several examples of “Poisson processes”:
• # of cars passing through a certain town in 1 hour
• # of requests to web servers in a minute
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour

Siméon Denis Poisson
1781-1840

Assume 
fixed average rate



Probability Mass Function 
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Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.
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෍

𝑖=0

∞

ℙ 𝑋 = 𝑖 =

Fact. σ𝑖=0
∞ 𝑥𝑖

𝑖!
= 𝑒𝑥

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.
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෍

𝑖=0

∞

ℙ 𝑋 = 𝑖 = 𝑒−𝜆෍

𝑖=0

∞
𝜆𝑖

𝑖!
= 𝑒−𝜆𝑒𝜆 = 1

Fact. σ𝑖=0
∞ 𝑥𝑖

𝑖!
= 𝑒𝑥

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Expectation
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then
𝔼(𝑋) = 𝜆

𝔼 𝑋 = σ𝑖=0
∞ 𝑖 ⋅ ℙ 𝑋 = 𝑖Proof.

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Expectation
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then
𝔼(𝑋) = 𝜆

𝔼 𝑋 =෍

𝑖=0

∞

𝑒−𝜆 ⋅
𝜆𝑖

𝑖!
⋅ 𝑖 = ෍

𝑖=1

∞

𝑒−𝜆 ⋅
𝜆𝑖

(𝑖 − 1)!

= 𝜆෍

𝑖=1

∞

𝑒−𝜆 ⋅
𝜆𝑖−1

(𝑖 − 1)!

= 𝜆෍

𝑖=0

∞

𝑒−𝜆 ⋅
𝜆𝑖

𝑖!

Proof.

= 1 (see prior slides!)

= 𝜆 ⋅ 1 = 𝜆

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Variance
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then Var(𝑋) = 𝜆

𝔼 𝑋2 =෍

𝑖=0

∞

𝑒−𝜆 ⋅
𝜆𝑖

𝑖!
⋅ 𝑖2Proof. = 𝜆2 + 𝜆

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2 = 𝜆2 + 𝜆 − 𝜆2 = 𝜆

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Variance
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then Var(𝑋) = 𝜆

𝔼 𝑋2 =෍

𝑖=0

∞

𝑒−𝜆 ⋅
𝜆𝑖

𝑖!
⋅ 𝑖2 =෍

𝑖=1

∞

𝑒−𝜆 ⋅
𝜆𝑖

(𝑖 − 1)!
𝑖

= 𝜆෍

𝑖=1

∞

𝑒−𝜆 ⋅
𝜆𝑖−1

(𝑖 − 1)!
⋅ 𝑖 = 𝜆෍

𝑗=0

∞

𝑒−𝜆 ⋅
𝜆𝑗

𝑗!
⋅ (𝑗 + 1)

Proof.

= 𝜆 ෍

𝑗=0

∞

𝑒−𝜆 ⋅
𝜆𝑗

𝑗!
⋅ 𝑗 +෍

𝑗=0

∞

𝑒−𝜆 ⋅
𝜆𝑗

𝑗!
= 𝜆2 + 𝜆

= 𝔼 𝑋 = 𝜆 = 1
Similar to the previous proof 
Verify offline. 

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2 = 𝜆2 + 𝜆 − 𝜆2 = 𝜆

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Poisson Random Variables
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Definition. A Poisson random variable 𝑋 with parameter 𝜆 ≥ 0 is such 
that for all 𝑖 = 0,1,2,3…,

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!

Notation: 𝑋 ∼ Poi(𝜆)

PMF: Pr 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!

Expectation: E 𝑋 = 𝜆
Variance: Var 𝑋 = 𝜆



Sum of Independent Poisson RVs 
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Theorem. Let 𝑋~𝑃𝑜𝑖(𝜆1) and 𝑌~𝑃𝑜𝑖(𝜆2) such that 𝜆 = 𝜆1 + 𝜆2. 

Let Z = 𝑋 + 𝑌 . For all 𝑘 = 0,1,2,3…,

ℙ 𝑍 = 𝑘 = 𝑒−𝜆 ⋅
𝜆𝑘

𝑘!

More generally, let 𝑋1~𝑃𝑜𝑖 𝜆1 , ⋯ , 𝑋𝑛~𝑃𝑜𝑖(𝜆𝑛) such that 𝜆 = Σ𝑖𝜆𝑖. 

Let Z = Σ𝑖𝑋𝑖

ℙ 𝑍 = 𝑘 = 𝑒−𝜆 ⋅
𝜆𝑘

𝑘!



Poisson Example

There are two ERs in a small town that act independently. The 
first has an average of 4 patients admitted per hour, and the 
second has an average of 3. What is the likelihood that in the 
next hour, 10 patients are admitted across both ERs?
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Agenda

• Poisson RV

• Continuous Random Variables

• Probability Density Function 

• Cumulative Distribution Function

• Expectation and Variance
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Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

• 𝑇 = time of lightning strike

• Every time within [0,1] is equally likely

– Time measured with infinitesimal precision.
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0 1𝑇 = 0.71237131931129576…

The outcome space is not discrete
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Lightning strikes a pole within a one-minute time frame

• 𝑇 = time of lightning strike

• Every point in time within [0,1] is equally likely

0 10.5
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Lightning strikes a pole within a one-minute time frame

• 𝑇 = time of lightning strike

• Every point in time within [0,1] is equally likely

ℙ 0.2 ≤ 𝑇 ≤ 0.5 =

0 10.50.2
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Lightning strikes a pole within a one-minute time frame

• 𝑇 = time of lightning strike

• Every point in time within [0,1] is equally likely

ℙ 𝑇 = 0.5 =

0 10.5



Bottom line

• This gives rise to a different type of random variable

• ℙ 𝑇 = 𝑥 = 0 for all 𝑥 ∈ [0,1]

• Yet, somehow we want

– ℙ 𝑇 ∈ [0,1] = 1

– ℙ 𝑇 ∈ [𝑎, 𝑏] = 𝑏 − 𝑎

– …

• How do we model the behavior of 𝑇?
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Agenda

• Poisson RV

• Continuous Random Variables

• Probability Density Function 

• Cumulative Distribution Function

• Expectation and Variance
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Definition. A continuous random variable 𝑋 is defined by a 
probability density function (PDF) 𝑓𝑋: ℝ → ℝ, such that 
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Non-negativity: 𝑓𝑋 𝑥 ≥ 0 for all 𝑥 ∈ ℝ
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Probability Density Function - Intuition

Non-negativity: 𝑓𝑋 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ׬−∞
+∞

𝑓𝑋 𝑥 d𝑥 = 1
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Probability Density Function - Intuition

Non-negativity: 𝑓𝑋 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ׬−∞
+∞

𝑓𝑋 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓𝑋 𝑥 d𝑥
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Probability Density Function - Intuition

𝑦

Non-negativity: 𝑓𝑋 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ׬−∞
+∞

𝑓𝑋 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓𝑋 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = න
𝑦

𝑦

𝑓𝑋 𝑥 d𝑥 = 0

Density ≠ Probability

𝑓𝑋 𝑦 ≠ 0 ℙ 𝑋 = 𝑦 = 0
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Probability Density Function - Intuition

𝑦𝑦 −
𝜖

2
𝑦 +

𝜖

2

Non-negativity: 𝑓𝑋 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ׬−∞
+∞

𝑓𝑋 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓𝑋 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = න
𝑦

𝑦

𝑓𝑋 𝑥 d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝑃 𝑦 −
𝜖

2
≤ 𝑋 ≤ 𝑦 +

𝜖

2
= න

𝑦−
𝜖
2

𝑦+
𝜖
2
𝑓𝑋 𝑥 d𝑥 ≈ 𝜖𝑓𝑋(𝑦)



𝑃 𝑋 ≈ 𝑦

𝑃 𝑋 ≈ 𝑧
≈
𝜖𝑓𝑋 𝑦

𝜖𝑓𝑋 𝑧
=
𝑓𝑋 𝑦

𝑓𝑋 𝑧 26

Non-negativity: 𝑓𝑋 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ׬−∞
+∞

𝑓𝑋 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓𝑋 𝑥 d𝑥

Probability Density Function - Intuition

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = න
𝑦

𝑦

𝑓𝑋 𝑥 d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝑃 𝑦 −
𝜖

2
≤ 𝑋 ≤ 𝑦 +

𝜖

2
= න

𝑦−
𝜖
2

𝑦+
𝜖
2
𝑓𝑋 𝑥 d𝑥 ≈ 𝜖𝑓𝑋(𝑦)

𝑃 𝑋 ≈ 𝑦

𝑃 𝑋 ≈ 𝑧
= 2

𝑦 𝑧



Definition. A continuous random variable 𝑋 is defined by a 
probability density function (PDF) 𝑓𝑋: ℝ → ℝ, such that
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Non-negativity: 𝑓𝑋 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ׬−∞
+∞

𝑓𝑋 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓𝑋 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = න
𝑦

𝑦

𝑓𝑋 𝑥 d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝑃 𝑦 −
𝜖

2
≤ 𝑋 ≤ 𝑦 +

𝜖

2
= න

𝑦−
𝜖
2

𝑦+
𝜖
2
𝑓𝑋 𝑥 d𝑥 ≈ 𝜖𝑓𝑋(𝑦)

𝑃 𝑋 ≈ 𝑦

𝑃 𝑋 ≈ 𝑧
≈
𝜖𝑓𝑋 𝑦

𝜖𝑓𝑋 𝑧
=
𝑓𝑋 𝑦

𝑓𝑋 𝑧



PDF of Uniform RV
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𝑓𝑋 𝑥 = ቊ
1, 𝑥 ∈ [0,1]

0, 𝑥 ∉ [0,1]

න
−∞

+∞

𝑓𝑋 𝑥 d𝑥 = න
0

1

𝑓𝑋 𝑥 d𝑥 = 1 ⋅ 1 = 1

0

1

𝑋 ∼ Unif(0,1) Non-negativity: 𝑓𝑋 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ׬−∞
+∞

𝑓𝑋 𝑥 d𝑥 = 1



Probability of Event
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0

1

𝑋 ∼ Unif(0,1)

𝑎 𝑏

𝑓𝑋 𝑥 = ቊ
1, 𝑥 ∈ [0,1]

0, 𝑥 ∉ [0,1]

Non-negativity: 𝑓𝑋 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ׬−∞
+∞

𝑓𝑋 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓𝑋 𝑥 d𝑥

1. If 0 ≤ 𝑎 𝑎𝑛𝑑 𝑏 ≤ 1
ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑏 − 𝑎

2. If 𝑎 < 0 𝑎𝑛𝑑 0 ≤ 𝑏 ≤ 1
ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑏

3. If 𝑎 ≥ 0 𝑎𝑛𝑑 𝑏 > 1
ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑏 − 𝑎

4. If 𝑎 < 0 𝑎𝑛𝑑 𝑏 > 1
ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 = 1

A. All of them are correct
B. Only 1, 2, 4 are right 
C. Only 1 is right 
D. Only 1 and 2 are right 



PDF of Uniform RV
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𝑓𝑋 𝑥 = ቊ
2, 𝑥 ∈ [0,0.5]

0, 𝑥 ∉ [0,0.5]

න
−∞

+∞

𝑓𝑋 𝑥 d𝑥 = න
0

0.5

𝑓𝑋 𝑥 d𝑥 = 2 ⋅ 0.5 = 1

0

2

𝑋 ∼ Unif(0,0.5)

Density ≠ Probability

1

0.5

𝑓𝑋 𝑥 ≫ 1 is possible!

Intuition: ℙ 𝑋 ≈ 𝑥 ≈ 𝑓𝑋 𝑥 ⋅ 𝜖 for small 𝜖



Uniform Distribution

31

𝑓𝑋 𝑥 = ቐ
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else

න
−∞

+∞

𝑓𝑋 𝑥 d𝑥 = 𝑏 − 𝑎
1

𝑏 − 𝑎
= 1

0

1

𝑏 − 𝑎

𝑋 ∼ Unif(𝑎, 𝑏)

𝑎 𝑏



Agenda

• Poisson RV

• Continuous Random Variables

• Probability Density Function 

• Cumulative Distribution Function

• Expectation and Variance

32



33

10

𝑓𝑇 𝑥 = ቊ
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

0

1

Example. 𝑇 ∼ Unif(0,1)

10
0

𝐹𝑇 𝑥 = 𝑃(𝑇 ≤ 𝑥) = ቐ
0 𝑥 ≤ 0
? 0 ≤ 𝑥 ≤ 1
1 1 ≤ 𝑥

Probability Density Function

Cumulative Distribution Function 

1

𝑥

𝑥



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 𝑋 is 

𝐹𝑋 𝑎 = ℙ 𝑋 ≤ 𝑎 = ∞−׬
𝑎

𝑓𝑋 𝑥 d𝑥

By the fundamental theorem of Calculus 𝑓𝑋 𝑥 =
𝑑

𝑑𝑥
𝐹(𝑥)



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 𝑋 is 

𝐹𝑋 𝑎 = ℙ 𝑋 ≤ 𝑎 = ∞−׬
𝑎

𝑓𝑋 𝑥 d𝑥

35

Therefore: ℙ 𝑋 ∈ [𝑎, 𝑏] = 𝐹 𝑏 − 𝐹(𝑎)

By the fundamental theorem of Calculus 𝑓𝑋 𝑥 =
𝑑

𝑑𝑥
𝐹(𝑥)

𝐹𝑋 is monotone increasing, since 𝑓𝑋 𝑥 ≥ 0. That is 𝐹𝑋 𝑐 ≤ 𝐹𝑋 𝑑 for 𝑐 ≤ 𝑑

Lim𝑎→−∞ 𝐹𝑋 𝑎 = 𝑃 𝑋 ≤ −∞ = 0 Lim𝑎→+∞ 𝐹𝑋 𝑎 = 𝑃 𝑋 ≤ +∞ = 1



From Discrete to Continuous
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• Continuous Random Variables

• Probability Density Function 

• Cumulative Distribution Function

• Expectation and Variance

37



Expectation of a Continuous RV

38

Definition. The expected value of a continuous RV 𝑋 is defined as

𝔼(𝑋) = න
−∞

+∞

𝑓𝑋 𝑥 ⋅ 𝑥 d𝑥

Fact. 𝔼 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝔼 𝑋 + 𝑏𝔼 𝑌 + 𝑐

Definition. The variance of a continuous RV 𝑋 is defined as

Var 𝑋 = න
−∞

+∞

𝑓𝑋 𝑥 ⋅ 𝑥 − 𝔼 𝑋
2
d𝑥 = 𝔼 𝑋2 − 𝔼 𝑋 2



Expectation of a Continuous RV

39

Definition.

𝔼(𝑋) = න
−∞

+∞

𝑓𝑋 𝑥 ⋅ 𝑥 d𝑥

𝑓𝑇 𝑥 = ቊ
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

Example. 𝑇 ∼ Unif(0,1)

10
0

1



Uniform Distribution

40

𝑓𝑋 𝑥 = ቐ
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else

0

1

𝑋 ∼ Unif(𝑎, 𝑏)

𝑎 𝑏

We also say that 𝑋
follows the uniform 
distribution / is 
uniformly distributed



Uniform Density – Expectation 
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𝑓𝑋 𝑥 = ቐ
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏)

𝔼 𝑋 = න
−∞

+∞

𝑓𝑋 𝑥 ⋅ 𝑥 d𝑥



Uniform Density – Expectation 
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𝑓𝑋 𝑥 = ቐ
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏)

𝔼 𝑋 = න
−∞

+∞

𝑓𝑋 𝑥 ⋅ 𝑥 d𝑥

=
1

𝑏 − 𝑎
න
𝑎

𝑏

𝑥 d𝑥 =
1

𝑏 − 𝑎
อ

𝑥2

2
𝑎

𝑏

=
1

𝑏 − 𝑎

𝑏2 − 𝑎2

2

=
(𝑏 − 𝑎)(𝑎 + 𝑏)

2(𝑏 − 𝑎)
=
𝑎 + 𝑏

2



Uniform Density – Variance 
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𝑓𝑋 𝑥 = ቐ
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏)

𝔼 𝑋2 = න
−∞

+∞

𝑓𝑋 𝑥 ⋅ 𝑥2 d𝑥
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𝑓𝑋 𝑥 = ቐ
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏)

𝔼 𝑋2 = න
−∞

+∞

𝑓𝑋 𝑥 ⋅ 𝑥2 d𝑥

=
1

𝑏 − 𝑎
න
𝑎

𝑏

𝑥2 d𝑥 =
1

𝑏 − 𝑎
อ

𝑥3

3
𝑎

𝑏

=
𝑏3 − 𝑎3

3(𝑏 − 𝑎)

=
(𝑏 − 𝑎)(𝑏2 + 𝑎𝑏 + 𝑎2)

3(𝑏 − 𝑎)
=
𝑏2 + 𝑎𝑏 + 𝑎2

3



Uniform Density – Variance 

45

𝑋 ∼ Unif(𝑎, 𝑏)

𝔼 𝑋2 =
𝑏2 + 𝑎𝑏 + 𝑎2

3
𝔼 𝑋 =

𝑎 + 𝑏

2

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2

=
𝑏2 + 𝑎𝑏 + 𝑎2

3
−
𝑎2 + 2𝑎𝑏 + 𝑏2

4

=
4𝑏2 + 4𝑎𝑏 + 4𝑎2

12
−
3𝑎2 + 6𝑎𝑏 + 3𝑏2

12

=
𝑏2 − 2𝑎𝑏 + 𝑎2

12
=

𝑏 − 𝑎 2

12


