CSE 312
 Foundations of Computing II

Lecture 12: Continuous Random Variables

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©
[- Poisson RV

- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance

Poisson Distribution

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter $\lambda($ denoted $X \sim \operatorname{Poi}(\lambda)$) and has distribution (PMF):

$$
\mathbb{P}\left(X=\frac{i}{n}\right)=\underbrace{\stackrel{\downarrow}{\lambda} \cdot \frac{\lambda^{\top}}{\square!!^{\omega}}}
$$

Several examples of "Poisson processes":

- \# of cars passing through a certain town in 1 hour
- \# of requests to web servers in a minute
- \# of photons hitting a light detector in a given interval
- \# of patients arriving to ER within an hour

Probability Mass Function $\quad[0, \infty)$

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Validity of Distribution

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

$$
\sum_{i=0}^{\infty} \mathbb{P}(X=i)=
$$

Fact. $\sum_{i=0}^{\infty} \frac{x^{i}}{i!}=e^{x}$

Validity of Distribution

$$
\mathbb{P}(X=i)=\widetilde{⿷^{-\lambda} \cdot \frac{\lambda^{i}}{i!}}
$$

We first want to verify that Poisson probabilities sum up to 1 .

Expectation

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then

$$
\mathbb{E}(X)=\lambda
$$

Proof. $\mathbb{E}(X)=\sum_{i=0}^{\infty} i \cdot \mathbb{P}(X=i)$

Expectation

$$
P_{G i}(\lambda)
$$

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then

$$
\mathbb{E}(X)=\lambda
$$

Proof.

$$
\begin{aligned}
\mathbb{E}(X)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i & =\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} \\
& =\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=\lambda \cdot 1=\lambda
\end{aligned}
$$

Variance

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\mathbb{E}\left(X^{2}\right)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\lambda^{2}+\lambda$

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

Variance

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\mathbb{E}\left(X^{2}\right)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i$

$$
\begin{aligned}
& =\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i=\lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot(j+1) \\
& =\lambda \underbrace{\left[\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot j\right.} \cdot \underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!}}]=\lambda^{2}+\lambda \\
& \text { Similar to }
\end{aligned}
$$

Similar to the previous proof Verify offline.

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \not \subset 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Notation: $X \sim \operatorname{Poi}(\lambda)$
PMF: $\operatorname{Pr}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$
Expectation: $\mathrm{E}[\mathrm{X}]=\lambda \kappa$
Variance: $\operatorname{Var}(X)=\lambda \quad \kappa$

Sum of Independent Poisson RVs

$$
\lambda_{1} \lambda_{2}
$$

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $\mathrm{Z}=(X+Y)$. For all $k=0,1,2,3 \ldots$,

$$
Z \sim P_{0}:\left(\lambda_{1}+\lambda_{2}\right)
$$

$$
\mathbb{P}(Z=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

More generally, let $X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), \cdots, X_{n} \sim \operatorname{Poi}\left(\lambda_{n}\right)$ such that $\lambda=\Sigma_{i} \lambda_{i}$. Let $\mathrm{Z}=\Sigma_{i} X_{i}$

$$
\begin{array}{ll}
A \sim \operatorname{Be}\left(p_{1}=0.7\right) & \mathbb{P}(Z=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!} \\
B \sim \operatorname{Be}\left(p_{i}=0 . u\right) & C=A+B
\end{array}
$$

Poisson Example

$$
\begin{aligned}
& G=P_{0 i} \\
& Z=X+x_{i}=\frac{y}{2}=3
\end{aligned}
$$

There are two ERs in a small town that act independently. The first has an average of 4 patients admitted per hour, and the $y^{\text {A second }}$ has an average of 3 . What is the likelihood that in the next hour, 10 patients are admitted across both ERs?

$$
\begin{aligned}
& Z \wedge P_{0 i}(3+4) \\
& R(Z=10)=e^{-7} \frac{7^{10}}{10!}=
\end{aligned}
$$

Agenda

- Poisson RV
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance

Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every time within $[0,1]$ is equally likely
- Time measured with infinitesimal precision.

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

$$
\mathbb{P}(T \geq 0.5)=0.5
$$

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely

Bottom line

- This gives rise to a different type of random variable
- $\mathbb{P}(T=x)=0$ for all $x \in[0,1]$
- Yet, somehow we want

$$
\begin{aligned}
& -\mathbb{P}(T \in[0,1])=1 \\
& -\mathbb{P}(T \in[a, b])=b-a \\
& -\ldots
\end{aligned}
$$

- How do we model the behavior of T ?

Agenda

- Poisson RV
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \frac{\mathbb{R}}{\mathbb{R}} \rightarrow \underset{\sim}{\mathbb{R}}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\text { Normalization: } \int_{-\infty}^{+\infty} \frac{f_{X}(x)}{3} \mathrm{~d} x=1
$$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\begin{aligned}
& \text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1 \\
& \qquad P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
\end{aligned}
$$

Probability Density Function - Intuition

Probability Density Function - Intuition

Probability Density Function - Intuition

$$
\frac{P(X \approx y)}{P(X \approx z)}=2
$$

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$

$$
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
$$

$$
P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0
$$

y

$$
P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y-\frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y)
$$

$$
\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{z f_{X}(y)}{\varepsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)} 6
$$

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$

$$
\begin{aligned}
& P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x \\
& P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0 \\
& P(X \approx y) \approx P\left(y-\frac{\downarrow}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y-\frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y) \\
& \frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}
\end{aligned}
$$

PDF of Uniform RV

$X \sim \operatorname{Unif}(0,1)$
Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability of Event $\quad \begin{aligned} & a=0.2 \\ & b=0.7\end{aligned} \pi(0.2 \leq x \leq 0.7)=\int_{0.2}^{0.7} 1 d x=0.7-0.2$ $X \sim \operatorname{Unif}(0,1)$

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R} 0.5$

PDF of Uniform RV
$X \sim \operatorname{Unif}(0,0.5)$

Uniform Distribution

$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Agenda

- Poisson RV
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance

Example. $T \sim \operatorname{Unif}(0,1)$

Probability Density Function

$$
f_{T}(x)= \begin{cases}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

Cumulative Distribution Function

$$
F_{T}(x)=P(T \leq x)=\left\{\begin{array}{cc}
0 & x \leq 0 \\
? & 0 \leq x \leq 1 \\
1 & 1 \leq x
\end{array}\right.
$$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=\mathbb{P}(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F(x)$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=\mathbb{P}(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F(x)$
Therefore: $\mathbb{P}(X \in[a, b])=F(b)-F(a)$
F_{X} is monotone increasing, since $f_{X}(x) \geq 0$. That is $F_{X}(c) \leq F_{X}(d)$ for $c \leq d$
$\operatorname{Lim}_{a \rightarrow-\infty} F_{X}(a)=P(X \leq-\infty)=0 \quad \operatorname{Lim}_{a \rightarrow+\infty} F_{X}(a)=P(X \leq+\infty)=1$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$
Expectation	$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Agenda

- Poisson RV
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance

Expectation of a Continuous RV

Definition. The expected value of a continuous $\mathrm{RV} X$ is defined as

$$
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}(a X+b Y+c)=a \mathbb{E}(X)+b \mathbb{E}(Y)+c$

Definition. The variance of a continuous $\mathrm{RV} X$ is defined as

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot(x-\mathbb{E}(X))^{2} \mathrm{~d} x=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}
$$

Expectation of a Continuous RV

Example. $T \sim \operatorname{Unif}(0,1)$

Uniform Distribution

$X \sim \operatorname{Unif}(a, b)$
We also say that X follows the uniform distribution / is

Uniform Density - Expectation

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& \mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
\end{aligned}
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Uniform Density - Expectation

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

$$
\begin{gathered}
=\frac{1}{b-a} \int_{a}^{b} x \mathrm{~d} x= \\
\left.\frac{1}{b-a}\left(\frac{x^{2}}{2}\right)\right|_{a} ^{b}=\frac{1}{b-a}\left(\frac{b^{2}-a^{2}}{2}\right) \\
=\frac{(b-a)(a+b)}{2(b-a)}=\frac{a+b}{2}
\end{gathered}
$$

Uniform Density - Variance

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& \mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x^{2} \mathrm{~d} x
\end{aligned}
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Uniform Density - Variance

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& \begin{aligned}
& \mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x^{2} \mathrm{~d} x \\
&= \frac{1}{b-a} \int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{3}}{3}\right)\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)} \\
& 0 \frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
\end{aligned}
\end{aligned}
$$

Uniform Density - Variance

$$
\mathbb{E}\left(X^{2}\right)=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}(X)=\frac{a+b}{2}
$$

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2} \\
& =\frac{b^{2}+a b+a^{2}}{3}-\frac{a^{2}+2 a b+b^{2}}{4} \\
& =\frac{4 b^{2}+4 a b+4 a^{2}}{12}-\frac{3 a^{2}+6 a b+3 b^{2}}{12} \\
& =\frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

