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Motivation: “Named” Random Variables

Random Variables that show up all over the place. 

– Easily solve a problem by recognizing it’s a special case of one of 
these random variables.

Each RV introduced today will show:

– A general situation it models

– Its name and parameters

– Its PMF, Expectation, and Variance
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Welcome to the Zoo! (Preview) 🦍🐘🦁🐅🦓🐪🦒
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𝑋 ∼ Unif(𝑎, 𝑏)

𝑃 𝑋 = 𝑘 =
1

𝑏 − 𝑎 + 1

𝐸 𝑋 =
𝑎 + 𝑏

2

𝑉𝑎𝑟 𝑋 =
(𝑏 − 𝑎)(𝑏 − 𝑎 + 2)

12

𝑋 ∼ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛

𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘

𝐸 𝑋 = 𝑛𝑝

𝑉𝑎𝑟 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑋 ∼ Ber(𝑝)

𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝

𝐸 𝑋 = 𝑝

𝑉𝑎𝑟 𝑋 = 𝑝(1 − 𝑝)

𝑋 ∼ Geo(𝑝)

𝑃 𝑋 = 𝑘 = 1 − 𝑝 𝑘−1𝑝

𝐸 𝑋 =
1

𝑝

𝑉𝑎𝑟 𝑋 =
1 − 𝑝

𝑝2

𝑋 ∼ Poisson(𝜆)

𝑃 𝑋 = 𝑘 = 𝑒−𝜆 ⋅
𝜆𝑘

𝑘!

𝐸 𝑋 = 𝜆

𝑉𝑎𝑟 𝑋 = 𝜆

+ bonus ones!



Agenda

• Discrete Uniform Random Variables

• Bernoulli Random Variables

• Binomial Random Variables

• Geometric Random Variables

– Bonus material

• Poisson
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Discrete Uniform Random Variables

A discrete random variable 𝑋 equally likely to take any (int.) value 
between integers 𝑎 and 𝑏 (inclusive), is uniform.

Notation:

PMF:

Expectation:

Variance:

5

Example: value shown on one 
roll of a fair die



Discrete Uniform Random Variables

A discrete random variable 𝑋 equally likely to take any (int.) value 
between integers 𝑎 and 𝑏 (inclusive), is uniform.

Notation: 𝑋 ∼ Unif(𝑎, 𝑏)

PMF: Pr 𝑋 = 𝑖 =
1

𝑏 −𝑎+1

Expectation: E 𝑋 =
𝑎+𝑏

2

Variance: Var(𝑋) =
(𝑏−𝑎)(𝑏 −𝑎+2)

12
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Example: value shown on one 
roll of a fair die is Unif(1,6):

• Pr 𝑋 = 𝑖 = 1/6
• 𝐸 𝑋 = 7/2
• Var 𝑋 = 35/12



Agenda

• Discrete Uniform Random Variables

• Bernoulli Random Variables

• Binomial Random Variables

• Geometric Random Variables

– Bonus material

• Poisson
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Bernoulli Random Variables

A random variable 𝑋 that takes value 1 (“Success”) with probability 𝑝, 
and 0 (“Failure”) otherwise is called a Bernoulli random variable.

Notation: 𝑋 ∼ Ber(𝑝)

PMF: Pr 𝑋 = 1 = 𝑝, Pr 𝑋 = 0 = 1 − 𝑝

Expectation: 

Variance:
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Bernoulli Random Variables

A random variable 𝑋 that takes value 1 (“Success”) with probability 𝑝, 
and 0 (“Failure”) otherwise. 𝑋 is called a Bernoulli random variable.

Notation: 𝑋 ∼ Ber(𝑝)

PMF: Pr 𝑋 = 1 = 𝑝, Pr 𝑋 = 0 = 1 − 𝑝

Expectation: E 𝑋 = 𝑝 Note: E 𝑋2 = 𝑝

Variance: Var 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2 = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝)
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Examples:
• Coin flip
• Randomly guessing on a 

MC test question
• A server in a cluster fails



Agenda

• Discrete Uniform Random Variables

• Bernoulli Random Variables

• Binomial Random Variables

• Geometric Random Variables

– Bonus material

• Poisson
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Binomial Random Variables

A discrete random variable 𝑋 that is the number of successes in 𝑛
independent random variables 𝑌𝑖 ∼ Ber 𝑝 is a Binomial random 
variable where  𝑋 = σ𝑖=1

𝑛 𝑌𝑖
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Examples:
• # of heads in n coin flips
• # of 1s in a randomly generated n 

bit string
• # of servers that fail in a cluster of 

n computers
• # of bit errors in file written to disk
• # of elements in a bucket of a 

large hash table

Poll: 

Pr(𝑋 = 𝑘) = 
a. 𝑝𝑘 1 − 𝑝 𝑛−𝑘

b. 𝑛𝑝

c. 𝑛
𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘

d. 𝑛
𝑛−𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘



Binomial Random Variables

A discrete random variable 𝑋 that is the number of successes in 𝑛
independent random variables 𝑌𝑖 ∼ Ber 𝑝 . 𝑋 is a Binomial random 
variable where  𝑋 = σ𝑖=1

𝑛 𝑌𝑖
Notation: 𝑋 ∼ Bin(𝑛, 𝑝)

PMF: Pr 𝑋 = 𝑘 = 𝑛
𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘

Expectation:

Variance:

12

Poll: 

Mean Variance
a. 𝑝 𝑝
b. 𝑛𝑝 n𝑝(1 − 𝑝)
c. 𝑛𝑝 𝑛𝑝2

d. 𝑛𝑝 𝑛2𝑝



Binomial Random Variables

A discrete random variable 𝑋 that is the number of successes in 𝑛
independent random variables 𝑌𝑖 ∼ Ber 𝑝 . 𝑋 is a Binomial random 
variable where  𝑋 = σ𝑖=1

𝑛 𝑌𝑖
Notation: 𝑋 ∼ Bin(𝑛, 𝑝)

PMF: Pr 𝑋 = 𝑘 = 𝑛
𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘

Expectation: E 𝑋 = 𝑛𝑝

Variance: Var 𝑋 = 𝑛𝑝(1 − 𝑝)
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Mean, Variance of the Binomial

If 𝑌1, 𝑌2, … , 𝑌𝑛 ∼ Ber(𝑝) and independent (i.i.d), then

𝑋 = σ𝑖=1
𝑛 𝑌𝑖,    𝑋 ∼ Bin(𝑛, 𝑝)

Claim 𝐸 𝑋 = 𝑛𝑝

𝐸 𝑋 = 𝐸 ෍

𝑖=1

𝑛

𝑌𝑖 =෍

𝑖=1

𝑛

𝐸[𝑌𝑖] = 𝑛𝐸 𝑌1 = 𝑛𝑝

Claim 𝑉𝑎𝑟 𝑋 = 𝑛𝑝 1 − 𝑝

𝑉𝑎𝑟 𝑋 = 𝑉𝑎𝑟 ෍

𝑖=1

𝑛

𝑌𝑖 =෍

𝑖=1

𝑛

𝑉𝑎𝑟 𝑌𝑖 = 𝑛𝑉𝑎𝑟 𝑌1 = 𝑛𝑝(1 − 𝑝)
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Binomial PMFs
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Binomial PMFs
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Example

Sending a binary message of length 1024 bits over a network with probability 0.999 
of correctly sending each bit in the message without corruption (independent of 
other bits). Let 𝑋 be the number of corrupted bits. What is E[𝑋]? 
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Poll: 

a. 1022.99
b. 1.024
c. 1.02298
d. 1
e. Not enough 

information to 
compute



Agenda

• Discrete Uniform Random Variables

• Bernoulli Random Variables

• Binomial Random Variables

• Geometric Random Variables

– Bonus material

• Poisson
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Geometric Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌𝑖 ∼ Ber 𝑝 before seeing the first success. 𝑋 is called a Geometric 
random variable with parameter 𝑝. 

Notation: 𝑋 ∼ Geo(𝑝)

PMF: 

Expectation:

Variance:

19

Examples:
• # of coin flips until first 

head
• # of random guesses on 

MC questions until you 
get one right

• # of random guesses at a 
password until you hit it



Geometric Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌𝑖 ∼ Ber 𝑝 before seeing the first success. 𝑋 is called a Geometric 
random variable with parameter 𝑝. 

Notation: 𝑋 ∼ Geo(𝑝)

PMF: Pr 𝑋 = 𝑘 = 1 − 𝑝 𝑘−1𝑝

Expectation: E 𝑋 =
1

𝑝

Variance: Var 𝑋 =
1−𝑝

𝑝2
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Examples:
• # of coin flips until first 

head
• # of random guesses on 

MC questions until you 
get one right

• # of random guesses at a 
password until you hit it



Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You 
have been practicing, so you have a probability of 0.999 of getting each note 
correct (independent of the others). If you mess up a single note in the song, you 
must start over and play from the beginning. Let 𝑋 be the number of times you 
have to play the song from the start. What is E[𝑋]?
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Agenda

• Discrete Uniform Random Variables

• Bernoulli Random Variables

• Binomial Random Variables

• Geometric Random Variables

– Bonus material

• Poisson
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Bonus: Negative Binomial Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌𝑖 ∼ 𝐵𝑒𝑟 𝑝 before seeing the 𝑟𝑡ℎ success. Equivalently, 𝑋 =
σ𝑖=1
𝑟 𝑍𝑖 where Z𝑖 ∼ Geo(𝑝). 𝑋 is called a Negative Binomial random 

variable with parameters 𝑟, 𝑝. 

Notation: 𝑋 ∼ NegBin(𝑟, 𝑝)

PMF:

Expectation:

Variance:
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Bonus: Negative Binomial Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌𝑖 ∼ 𝐵𝑒𝑟 𝑝 before seeing the 𝑟𝑡ℎ success. Equivalently, 𝑋 =
σ𝑖=1
𝑟 𝑍𝑖 where Z𝑖 ∼ Geo(𝑝). 𝑋 is called a Negative Binomial random 

variable with parameters 𝑟, 𝑝. 

Notation: 𝑋 ∼ NegBin(𝑟, 𝑝)

PMF: Pr 𝑋 = 𝑘 = 𝑘−1
𝑟−1

𝑝𝑟 1 − 𝑝 𝑘−𝑟

Expectation: E 𝑋 =
𝑟

𝑝

Variance: Var 𝑋 =
𝑟(1−𝑝)

𝑝2
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Bonus: Hypergeometric Random Variables

A discrete random variable 𝑋 that measures the number of white balls 
you draw when you draw  𝑛 balls uniformly at random from a total of 𝑁
of which 𝐾 are white and the rest are black. 𝑋 is called a 
Hypergeometric RV with parameters 𝑁,𝐾, 𝑛. 

Notation: 𝑋 ∼ HypGeo(𝑁, 𝐾, 𝑛)

PMF:

Expectation:
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Bonus: Hypergeometric Random Variables

A discrete random variable 𝑋 that measures the number of white balls you 
draw when you draw  𝑛 balls uniformly at random from a total of 𝑁 of which 
𝐾 are white and the rest are black. 𝑋 is called a Hypergeometric RV with 
parameters 𝑁,𝐾, 𝑛. 

Notation: 𝑋 ∼ HypGeo(𝑁, 𝐾, 𝑛)

PMF: Pr 𝑋 = 𝑘 =
𝐾
𝑘

𝑁−𝐾
𝑛−𝑘
𝑁
𝑛

Expectation: E 𝑋 = 𝑛
𝐾

𝑁

Variance: Var 𝑋 = 𝑛
𝐾(𝑁−𝐾)(𝑁−𝑛)

𝑁2(𝑁−1)
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Agenda

• Discrete Uniform Random Variables

• Bernoulli Random Variables

• Binomial Random Variables

• Geometric Random Variables

– Bonus material

• Poisson
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Poisson Distribution

• Suppose “events” happen, independently, at an average rate of λ per 
unit time.

• Let X be the actual number of events happening in a given time 
unit. Then X is a Poisson r.v. with parameter λ (denoted X ~ Poi(λ)) 
and has distribution (PMF):

28

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!

Several examples of “Poisson processes”:
• # of cars passing through a certain town in 1 hour
• # of requests to web servers in a minute
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour

Siméon Denis Poisson
1781-1840

Assume 
fixed average rate



Probability Mass Function 
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ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.

30

෍

𝑖=0

∞

ℙ 𝑋 = 𝑖 =

Fact. σ𝑖=0
∞ 𝑥𝑖

𝑖!
= 𝑒𝑥

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.

31

෍

𝑖=0

∞

ℙ 𝑋 = 𝑖 = 𝑒−𝜆෍

𝑖=0

∞
𝜆𝑖

𝑖!
= 𝑒−𝜆𝑒𝜆 = 1

Fact. σ𝑖=0
∞ 𝑥𝑖

𝑖!
= 𝑒𝑥

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Expectation
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then
𝔼(𝑋) = 𝜆

𝔼 𝑋 = σ𝑖=0
∞ 𝑖 ⋅ ℙ 𝑋 = 𝑖Proof.

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Expectation
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then
𝔼(𝑋) = 𝜆

𝔼 𝑋 =෍

𝑖=0

∞

𝑒−𝜆 ⋅
𝜆𝑖

𝑖!
⋅ 𝑖 = ෍

𝑖=1

∞

𝑒−𝜆 ⋅
𝜆𝑖

(𝑖 − 1)!

= 𝜆෍

𝑖=1

∞

𝑒−𝜆 ⋅
𝜆𝑖−1

(𝑖 − 1)!

= 𝜆෍

𝑖=0

∞

𝑒−𝜆 ⋅
𝜆𝑖

𝑖!

Proof.

= 1 (see prior slides!)

= 𝜆 ⋅ 1 = 𝜆

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Variance
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then Var(𝑋) = 𝜆

𝔼 𝑋2 =෍

𝑖=0

∞

𝑒−𝜆 ⋅
𝜆𝑖

𝑖!
⋅ 𝑖2Proof. = 𝜆2 + 𝜆

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2 = 𝜆2 + 𝜆 − 𝜆2 = 𝜆

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Variance
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then Var(𝑋) = 𝜆

𝔼 𝑋2 =෍

𝑖=0

∞

𝑒−𝜆 ⋅
𝜆𝑖

𝑖!
⋅ 𝑖2 =෍

𝑖=1

∞

𝑒−𝜆 ⋅
𝜆𝑖

(𝑖 − 1)!
𝑖

= 𝜆෍

𝑖=1

∞

𝑒−𝜆 ⋅
𝜆𝑖−1

(𝑖 − 1)!
⋅ 𝑖 = 𝜆෍

𝑗=0

∞

𝑒−𝜆 ⋅
𝜆𝑗

𝑗!
⋅ (𝑗 + 1)

Proof.

= 𝜆 ෍

𝑗=0

∞

𝑒−𝜆 ⋅
𝜆𝑗

𝑗!
⋅ 𝑗 +෍

𝑗=0

∞

𝑒−𝜆 ⋅
𝜆𝑗

𝑗!
= 𝜆2 + 𝜆

= 𝔼 𝑋 = 𝜆 = 1
Similar to the previous proof 
Verify offline. 

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2 = 𝜆2 + 𝜆 − 𝜆2 = 𝜆

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!



Poisson Random Variables
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Definition. A Poisson random variable 𝑋 with parameter 𝜆 ≥ 0 is such 
that for all 𝑖 = 0,1,2,3…,

ℙ 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!

Notation: 𝑋 ∼ Poi(𝜆)

PMF: Pr 𝑋 = 𝑖 = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!

Expectation: E 𝑋 = 𝜆
Variance: Var 𝑋 = 𝜆



Sum of Independent Poisson RVs 
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Theorem. Let 𝑋~𝑃𝑜𝑖(𝜆1) and 𝑌~𝑃𝑜𝑖(𝜆2) such that 𝜆 = 𝜆1 + 𝜆2. 

Let Z = 𝑋 + 𝑌 . For all 𝑘 = 0,1,2,3…,

ℙ 𝑍 = 𝑘 = 𝑒−𝜆 ⋅
𝜆𝑘

𝑘!

More generally, let 𝑋1~𝑃𝑜𝑖 𝜆1 , ⋯ , 𝑋𝑛~𝑃𝑜𝑖(𝜆𝑛) such that 𝜆 = Σ𝑖𝜆𝑖. 

Let Z = Σ𝑖𝑋𝑖

ℙ 𝑍 = 𝑘 = 𝑒−𝜆 ⋅
𝜆𝑘

𝑘!



Poisson Example

There are two ERs in a small town that act independently. The 
first has an average of 4 patients admitted per hour, and the 
second has an average of 3. What is the likelihood that in the 
next hour, 10 patients are admitted across both ERs?
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