CSE 312 Foundations of Computing II

Lecture 12: Zoo of Discrete RVs

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Motivation: "Named" Random Variables

Random Variables that show up all over the place.

 Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance

Welcome to the Zoo! (Preview) 🖪 🕼 🐨 🎲 🐨

$$X \sim \text{Unif}(a, b)$$
 $X \sim \text{Ber}(p)$ $X \sim \text{Bin}(n, p)$ $P(X = k) = \frac{1}{b - a + 1}$ $P(X = 1) = p, P(X = 0) = 1 - p$ $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$ $E[X] = \frac{a + b}{2}$ $E[X] = p$ $E[X] = p$ $E[X] = np$ $Var(X) = \frac{(b - a)(b - a + 2)}{12}$ $Var(X) = p(1 - p)$ $Var(X) = np(1 - p)$

 $X \sim \text{Geo}(p)$ $P(X = k) = (1 - p)^{k - 1}p$ $E[X] = \frac{1}{p}$ $Var(X) = \frac{1 - p}{p^2}$

 $X \sim \text{Poisson}(\lambda)$ $P(X = k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$ $E[X] = \lambda$ $Var(X) = \lambda$

+ bonus ones!

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
 Bonus material
- Poisson

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (int.) value between integers a and b (inclusive), is uniform.

Notation: $X \mathcal{N} U_{ni}f(a, b)$

PMF:

Expectation:

Variance:

Example: value shown on one roll of a fair die

$$X \sim U_{n} (1, 6)$$

Discrete Uniform Random Variables $P(\langle =i \rangle = b - a + i = 6 - 1 + i)$

A discrete random variable X equally likely to take any (int.) value between integers a and b (inclusive), is uniform. $X \sim (l_n \rho(G))$

Notation: *X* ~ Unif(*a*, *b*)

Example: value shown on one roll of a fair die is Unif(1,6):

• $\Pr(X = i) \neq 1/6$

•
$$E[X] =$$

•
$$Var(X) = 35/12$$

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
 Bonus material
- Poisson

 $X_2 = i^{th} coin fip$

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise is called a Bernoulli random variable. Notation: $X \sim Ber(p)$ PMF: Pr(X = 1) = p, Pr(X = 0) = 1 - pExpectation: $\varepsilon[x] = \gamma$ Variance:

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable. Notation: $X \sim Ber(p)$ PMF: Pr(X = 1) = p, Pr(X = 0) = 1 - pExpectation: E[X] = p Note: $E[X^2] = p$ Variance: $Var(X) = E[X^2] - E[X]^2 = p - p^2 = p(1-p)$

Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
 Bonus material
- Poisson

Binomial Random Variables

A discrete random variable *X* that is the number of successes in *n* independent random variables $Y_i \sim \text{Ber}(p)$ is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Examples:

- # of heads in n coin flips
- # of 1s in a randomly generated n bit string
- # of servers that fail in a cluster of n computers
- # of bit errors in file written to disk
- # of elements in a bucket of a large hash table

Binomial Random Variables $\mathcal{R}(\mu) = \frac{1}{2} \left(\frac{1}{2} \right) + \mathcal{R}(\mu) + \frac{1}{2} \left(\frac{1}{2} \right) + \dots$

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Notation: $X \sim Bin(n, p)$ PMF: $Pr(X = k) = {\binom{n}{k}p^k(1-p)^{n-k}}$ Expectation: ρ

Variance: (1-)

Binomial Random Variables

A discrete random variable *X* that is the number of successes in *n* independent random variables $Y_i \sim \text{Ber}(p)$. *X* is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Notation: $X \sim Bin(n, p)$

PMF: $Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

Expectation: E[X] = np

Variance: Var(X) = np(1-p)

Mean, Variance of the Binomial

If $Y_1, Y_2, ..., Y_n \sim \text{Ber}(p)$ and independent (i.i.d), then $X = \sum_{i=1}^n Y_i, X \sim \text{Bin}(n, p)$

Claim
$$E[X] = np$$

$$E[X] = E\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} E[Y_i] = nE[Y_1] = np$$
Claim $Var(X) = np(1-p)$

$$Var(X) = Var\left(\sum_{i=1}^{n} Y_i\right) = \sum_{i=1}^{n} Var(Y_i) = nVar(Y_1) = np(1-p)$$

Binomial PMFs

PMF for X ~ Bin(30,0.5)

PMF for X ~ Bin(30,0.1)

16

Sending a binary message of length 1024 bits over a network with probability 0.999 $^{\prime\prime}$ of correctly sending each bit in the message without corruption (independent of other bits). Let X be the number of corrupted bits. What is E[X]?

$$\mathbb{P}(all complex) = (1 - 0.949)^{1629} \qquad X = 1027 \quad \text{Poll:}$$

$$al' good = 0.949^{1029} : 0.36 \quad X = 0 \quad a. 1022.99 \quad b. 1024 \quad c. 10224 \quad c. 1.02298 \quad d. 1 \quad c. 1.02298 \quad d. 1 \quad e. \text{ Not enough information to compute}$$

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
 - Bonus material
- Poisson

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the first success. X is called a Geometric random variable with parameter p.

Notation: $X \sim \text{Geo}(p)$

PMF:

Expectation:

Variance:

Examples:

- # of coin flips until first head
- # of random guesses on MC questions until you get one right
- *#* of random guesses at a password until you hit it

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the first success. X is called a Geometric random variable with parameter p.

Notation: $X \sim \text{Geo}(p)$ PMF: $\Pr(X = k) = (1 - p)^{k-1}p$ TTTT...+ Expectation: $E[X] = \begin{bmatrix} 1 \\ p \end{bmatrix}$ Variance: $Var(X) = \begin{bmatrix} 1 - p \\ p^2 \end{bmatrix}$

Examples:

- # of coin flips until first head
- # of random guesses on MC questions until you get one right
- *#* of random guesses at a password until you hit it

Example: Music Lessons Ber 3/2 Cro 1,00

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What is E[X]? 9=0,999 = 0.37

X ~ (jeo (0.37) $E[X] = \frac{1}{P} = \frac{1}{0.37} = [2.7]$

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
 Bonus material
- Poisson

Bonus: Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim Ber(p)$ before seeing the r^{th} success. Equivalently, $X = \sum_{i=1}^{r} Z_i$ where $Z_i \sim Geo(p)$. X is called a Negative Binomial random variable with parameters r, p.

Notation: $X \sim \text{NegBin}(r, p)$

PMF:

Expectation:

Variance:

Bonus: Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim Ber(p)$ before seeing the r^{th} success. Equivalently, $X = \sum_{i=1}^{r} Z_i$ where $Z_i \sim Geo(p)$. X is called a Negative Binomial random variable with parameters r, p.

Notation: $X \sim \text{NegBin}(r, p)$

PMF:
$$Pr(X = k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$$

Expectation: $E[X] = \frac{r}{p}$

Variance: $Var(X) = \frac{r(1-p)}{p^2}$

Bonus: Hypergeometric Random Variables

A discrete random variable X that measures the number of white balls you draw when you draw n balls uniformly at random from a total of Nof which K are white and the rest are black. X is called a Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \text{HypGeo}(N, K, n)$

PMF:

Expectation:

Bonus: Hypergeometric Random Variables

A discrete random variable X that measures the number of white balls you draw when you draw n balls uniformly at random from a total of N of which K are white and the rest are black. X is called a Hypergeometric RV with parameters N, K, n.

```
Notation: X \sim \text{HypGeo}(N, K, n)

PMF: \Pr(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}

Expectation: \mathbb{E}[X] = n\frac{K}{N}

Variance: \operatorname{Var}(X) = n\frac{K(N-K)(N-n)}{N^2(N-1)}
```

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
 Bonus material
- Poisson

Poisson Distribution

- Suppose "events" happen, independently, at an *average* rate of [↑] per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted X ~ Poi(λ)) and has distribution (PMF):

$$\mathbb{P}(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

Several examples of "Poisson processes":

- *#* of cars passing through a certain town <u>in 1 hour</u>
- # of requests to web servers in a minute
- *#* of photons hitting a light detector <u>in a given interval</u>
- # of patients arriving to ER within an hour

Assume fixed average rate

Validity of Distribution

$$\mathbb{P}(X=i)=e^{-\lambda}\cdot\frac{\lambda^i}{i!}$$

We first want to verify that Poisson probabilities sum up to 1.

$$\sum_{i=0}^{\infty} \mathbb{P}(X=i) =$$

Fact.
$$\sum_{i=0}^{\infty} \frac{x^i}{i!} = e^x$$

Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.

Proof. $\mathbb{E}(X) = \sum_{i=0}^{\infty} i \cdot \mathbb{P}(X = i)$

Variance

$$\mathbb{P}(X=i)=e^{-\lambda}\cdot\frac{\lambda^i}{i!}$$

Theorem. If X is a Poisson RV with parameter λ , then $Var(X) = \lambda$

Proof.
$$\mathbb{E}(X^2) = \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^i}{i!} \cdot i^2 = \lambda^2 + \lambda$$

$$\operatorname{Var}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

Variance

$$\mathbb{P}(X=i)=e^{-\lambda}\cdot\frac{\lambda^i}{i!}$$

35

Theorem. If X is a Poisson RV with parameter λ , then $Var(X) = \lambda$

Proof.
$$\mathbb{E}(X^2) = \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^i}{i!} \cdot i^2 = \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^i}{(i-1)!} i$$
$$= \lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i = \lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^j}{j!} \cdot (j+1)$$
$$= \lambda \left[\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^j}{j!} \cdot j + \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^j}{j!} \right] = \lambda^2 + \lambda$$
Similar to the previous proof Verify offline.
$$\mathbb{Var}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$
35

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \ge 0$ is such that for all i = 0, 1, 2, 3 ...,

$$\mathbb{P}(X=i)=e^{-\lambda}\cdot\frac{\lambda}{i!}$$

Notation: $X \sim \text{Poi}(\lambda)$ PMF: $\Pr(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$ Expectation: $\mathbb{E}[X] = \lambda$ Variance: $\operatorname{Var}(X) = \lambda$

Sum of Independent Poisson RVs

Theorem. Let $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = (X + Y). For all k = 0, 1, 2, 3 ..., $\mathbb{P}(Z = k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$

More generally, let $X_1 \sim Poi(\lambda_1), \dots, X_n \sim Poi(\lambda_n)$ such that $\lambda = \sum_i \lambda_i$. Let $Z = \sum_i X_i$

$$\mathbb{P}(Z=k)=e^{-\lambda}\cdot\frac{\lambda^{\kappa}}{k!}$$

Poisson Example

There are two ERs in a small town that act independently. The first has an average of 4 patients admitted per hour, and the second has an average of 3. What is the likelihood that in the next hour, 10 patients are admitted across both ERs?