CSE 312
 Foundations of Computing II

Lecture 12: Zoo of Discrete RVs

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Motivation: "Named" Random Variables

Random Variables that show up all over the place.

- Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance

$X \sim \operatorname{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$x \sim \operatorname{Bin}(n, p)$
$\begin{aligned} & P(X=k)=\frac{1}{b-a+1} \\ & E[X]=\frac{a+b}{2} \\ & \operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12} \end{aligned}$	$\begin{aligned} & P(X=1)=p, P(X=0)=1-p \\ & E[X]=p \\ & \operatorname{Var}(X)=p(1-p) \end{aligned}$	$\begin{aligned} & P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\ & E[X]=n p \\ & \operatorname{Var}(X)=n p(1-p) \end{aligned}$
$X \sim \operatorname{Geo}(p)$	$X \sim \operatorname{Poisson}(\lambda)$	
$\begin{aligned} & P(X=k)=(1-p)^{k-1} p \\ & E[X]=\frac{1}{p} \\ & \operatorname{Var}(X)=\frac{1-p}{p^{2}} \end{aligned}$	$\begin{aligned} & P(X=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!} \\ & E[X]=\lambda \\ & \operatorname{Var}(X)=\lambda \end{aligned}$	+ bonus ones!

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Bonus material
- Poisson

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (int.) value between integers a and b (inclusive), is uniform.

Notation: $X \sim U_{\text {nif }}(a, b)$

PMF:

Expectation:

Variance:

Discrete Uniform Random Variables $\mathbb{T}(X=i)=\frac{1}{b-a+1}=\frac{1}{6-1+1}$ $=\frac{1}{6}$
A discrete random variable X equally likely to take any (int.) value x_{\sim} Un.p $(1,6)$ between integers a and b (inclusive), is uniform. Example: value shown on one roll of a fair die is Unif(1,6):

- $\operatorname{Pr}(X=i)=1 / 0$
- $E[X]=\mathbb{Z}$
- $\operatorname{Var}(X)=35 / 12$

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Bonus material
- Poisson

Indicater?
Bernoulli Random Variables
$x_{1} x_{2} x_{3}$
$X_{i}=i^{\text {th }} \operatorname{coin} f^{\prime} p$

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $\operatorname{Pr}(X=1)=p, \operatorname{Pr}(X=0)=1-p$

Expectation: $E[x]=P$

Variance:

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $\operatorname{Pr}(X=1)=p, \operatorname{Pr}(X=0)=1-p$
Expectation: $\mathrm{E}[X]=p \quad$ Note: $\mathrm{E}\left[X^{2}\right]=p$
Variance: $\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=p-p^{2}=\underline{p(1-p)}$
Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Bonus material
- Poisson

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$ is a Binomial random variable where $\underset{\sim}{X}=\sum_{i=1}^{n} Y_{i}$

Examples:

- \# of heads in n coin flips
- \# of 1 s in a randomly generated n bit string
- \# of servers that fail in a cluster of n computers
- \# of bit errors in file written to disk
- \# of elements in a bucket of a large hash table

```
Poll:
Pr}(X=k)
a. p}\mp@subsup{p}{}{k}(1-p\mp@subsup{)}{}{n-k
b. np
c. (\begin{array}{l}{n}\\{k}\end{array})\mp@subsup{p}{}{k}(1-p\mp@subsup{)}{}{n-k}
d. (\begin{array}{c}{n}\\{n-k}\end{array})\mp@subsup{p}{}{k}(1-p\mp@subsup{)}{}{n-k}
```


Binomial Random Variables

$$
\binom{n}{n} p^{b^{h}}(1-p)^{n-h}
$$

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$. X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$
Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation: $\wedge p$
Variance: $n p(1-p)$
Poll:

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$. X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$
Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation: $\mathrm{E}[X]=n p$
Variance: $\operatorname{Var}(X)=n p(1-p)$

Mean, Variance of the Binomial

If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{Ber}(p)$ and independent (i.i.d), then
$X=\sum_{i=1}^{n} Y_{i}, \quad X \sim \operatorname{Bin}(n, p)$
Claim $E[X]=n p$

$$
E[X]=E\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} E\left[Y_{i}\right]=n E\left[Y_{1}\right]=n p
$$

Claim $\operatorname{Var}(X)=n p(1-p)$

$$
\operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)=n \operatorname{Var}\left(Y_{1}\right)=n p(1-p)
$$

Binomial PMFs $\quad=10=0.5$

PMF for $X \sim \operatorname{Bin}(\mathbf{1 0 , 0 . 5})$

PMF for $X \sim \operatorname{Bin}(10,0.25)$

Binomial PMFs

PMF for $X \sim \operatorname{Bin}(\mathbf{3 0}, 0.5)$

PMF for $\mathbf{X} \sim \operatorname{Bin}(\mathbf{3 0}, \mathbf{0 . 1})$

Example
Befoul:
Binomial Chips

$$
\begin{aligned}
& a=0 \\
& b=1024
\end{aligned}
$$

Sending a binary message of length 1024 bits over a network with probability 0.999^{\sim} of correctly sending each bit in the message without corruption (independent of other bits). Let $\frac{X}{3}$ be the number of corrupted bits. What is $\mathrm{E}[X]$?

$$
\begin{aligned}
\mathbb{P}(\text { all comps }) & =(1-0.949)^{1624} \quad x=1021 \quad X^{102 l:} \\
\text { all good } & =0.999^{1024}=0.36 \quad x=0
\end{aligned}
$$

$$
X \sim \operatorname{Bin}(1024,0.001)
$$

a. 1022.99
b. 1.024

$$
E[X]=0 p=1024 \cdot 0.001=
$$

c. 1.02298
d. 1
e. Not enough information to compute

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Bonus material
- Poisson

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success. X is called a Geometric random variable with parameter p.

Notation: $X \sim \operatorname{Geo}(p)$
PMF:
Expectation:
Variance:

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success. X is called a Geometric random variable with parameter p.
Notation: $X \sim \operatorname{Geo}(p)$
PMF: $\operatorname{Pr}(\underline{X=k})=\left(\underline{1-p)^{k-1}} p\right.$ TTTT...H
Expectation: $\mathrm{E}[X]=\frac{1}{p}$
Variance: $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Example: Music Lessons
Bes Bis Mop (6e0

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What is $\mathrm{E}[X]$?

$$
\begin{aligned}
& X \sim \operatorname{Geo}(0.37) \\
& E[X]=\frac{1}{p}=\frac{1}{0.37}=2.7
\end{aligned}
$$

$$
p=0.999^{1000}=0.37
$$

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Bonus material
- Poisson

Bonus: Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the $r^{t h}$ success. Equivalently, $X=$ $\sum_{i=1}^{r} Z_{i}$ where $\mathrm{Z}_{i} \sim \operatorname{Geo}(p) . X$ is called a Negative Binomial random variable with parameters r, p.
Notation: $X \sim \operatorname{NegBin}(r, p)$
PMF:

Expectation:

Variance:

Bonus: Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the $r^{t h}$ success. Equivalently, $X=$ $\sum_{i=1}^{r} Z_{i}$ where $\mathrm{Z}_{i} \sim \mathrm{Geo}(p) . X$ is called a Negative Binomial random variable with parameters r, p.
Notation: $X \sim \operatorname{NegBin}(r, p)$
PMF: $\operatorname{Pr}(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}$
Expectation: $\mathrm{E}[X]=\frac{r}{p}$
Variance: $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$

Bonus: Hypergeometric Random Variables

A discrete random variable X that measures the number of white balls you draw when you draw n balls uniformly at random from a total of N of which K are white and the rest are black. X is called a Hypergeometric RV with parameters N, K, n.
Notation: $X \sim \operatorname{HypGeo}(N, K, n)$

PMF:

Expectation:

Bonus: Hypergeometric Random Variables

A discrete random variable X that measures the number of white balls you draw when you draw n balls uniformly at random from a total of N of which K are white and the rest are black. X is called a Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \operatorname{HypGeo}(N, K, n)$
PMF: $\operatorname{Pr}(X=k)=\left[\begin{array}{c}K\binom{N-K}{k}\left(\begin{array}{c}N-k \\ n \\ n\end{array}\right) \\ \hline n\end{array}\right]$
Expectation: $\mathrm{E}[X]=n \frac{K}{N}$
Variance: $\operatorname{Var}(X)=\sqrt{n \frac{N(N-K)(N-n)}{N^{2}(N-1)}}$

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Bonus material
- Poisson

Poisson Distribution

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted $X \sim \operatorname{Poi}(\lambda)$) and has distribution (PMF):

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Several examples of "Poisson processes":

- \# of cars passing through a certain town in 1 hour
- \# of requests to web servers in a minute

Assume
fixed average rate

- \# of photons hitting a light detector in a given interval

Probability Mass Function

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Validity of Distribution

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

$$
\sum_{i=0}^{\infty} \mathbb{P}(X=i)=
$$

Fact. $\sum_{i=0}^{\infty} \frac{x^{i}}{i!}=e^{x}$

Validity of Distribution

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

$$
\sum_{i=0}^{\infty} \mathbb{P}(X=i)=e^{-\lambda} \underbrace{\sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}}=e^{-\lambda} e^{\lambda}=1
$$

$$
\text { Fact. } \sum_{i=0}^{\infty} \frac{x^{i}}{i!}=e^{x}
$$

Expectation

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then

$$
\mathbb{E}(X)=\lambda
$$

Proof. $\mathbb{E}(X)=\sum_{i=0}^{\infty} i \cdot \mathbb{P}(X=i)$

Expectation

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then

$$
\mathbb{E}(X)=\lambda
$$

Proof.

$$
\begin{aligned}
\mathbb{E}(X)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i & =\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} \\
& =\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=\lambda \cdot 1=\lambda
\end{aligned}
$$

Variance

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\mathbb{E}\left(X^{2}\right)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\lambda^{2}+\lambda$

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

Variance

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\mathbb{E}\left(X^{2}\right)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i$

$$
\begin{aligned}
& =\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i=\lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot(j+1) \\
& =\lambda \underbrace{\left[\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot j\right.} \cdot \underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!}}]=\lambda^{2}+\lambda \\
& \text { Similar to }
\end{aligned}
$$

Similar to the previous proof Verify offline.

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Notation: $X \sim \operatorname{Poi}(\lambda)$
PMF: $\operatorname{Pr}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$
Expectation: $\mathrm{E}[X]=\lambda$
Variance: $\operatorname{Var}(X)=\lambda$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$. Let $\mathrm{Z}=(X+Y)$. For all $k=0,1,2,3 \ldots$,

$$
\mathbb{P}(Z=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

More generally, let $X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), \cdots, X_{n} \sim \operatorname{Poi}\left(\lambda_{n}\right)$ such that $\lambda=\Sigma_{i} \lambda_{i}$. Let $\mathrm{Z}=\Sigma_{i} X_{i}$

$$
\mathbb{P}(Z=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

Poisson Example

There are two ERs in a small town that act independently. The first has an average of 4 patients admitted per hour, and the second has an average of 3 . What is the likelihood that in the next hour, 10 patients are admitted across both ERs?

