CSE 312 Foundations of Computing II

Lecture 10: More on Discrete RVs

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Agenda

- Linearity Recap 🗨
- LOTUS
- Variance
 - Properties of Variance
- Independent Random Variables

V

- Properties of Independent Random Variables
- Application: <u>Bloom Filter</u>
 - Read textbook, if time permits we'll go over it in lecture

Recap Linearity of Expectation

Theorem. For any two random variables *X* and *Y* (*X*, *Y* do not need to be independent)

 $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y).$

Theorem. For any random variables X_1, \ldots, X_n , and real numbers $a_1, \ldots, a_n \in \mathbb{R}$,

$$\mathbb{E}(a_1X_1 + \dots + a_nX_n) = a_1\mathbb{E}(X_1) + \dots + a_n\mathbb{E}(X_n).$$

For any event A, can define the indicator random variable X for A $X = \begin{cases} 1 & if event A occurs \\ 0 & if event A does not occur \end{cases}$

 $\mathbb{P}(X = 1) = \mathbb{P}(A)$ $\mathbb{P}(X = 0) = 1 - \mathbb{P}(A)$

Rotating the table

- n people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in front of their own name tag.
- Rotate the table by a random number k of positions between 1 and n-1 (equally likely).
- X is the number of people that end up front of their own name tag. What is E(X)? $X_i = 1$ is Q there tog
- Decompose: $X = X_1 + X_2 + X_n$ LOE: $E[X] = E[X_1 + X_n] = E[X_1] + \dots + E[X_n]$ Conquer: $E[X_1] = \begin{bmatrix} 1 \\ n-1 \end{bmatrix} = \begin{bmatrix} 1 \\ n-1 \end{bmatrix} = \begin{bmatrix} n \\ n-1$

Agenda

- Linearity Recap
- LOTUS
- Variance
 - Properties of Variance
- Independent Random Variables
 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture

Linearity is special!

In general $\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$ E.g., $X = \begin{cases} 1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$ $\circ \mathbb{E}(X^2) \neq \mathbb{E}(X)^2 \qquad \mathbb{E}[X] = |\cdot|/2 + (-1) \cdot 1/2$ = 0

 $g(X) = X^2 \quad E(g(X)) \stackrel{?}{=} g(E(X))$

ESXJ =

How DO we compute $\mathbb{E}(g(X))$?

Expectation of g(X) *L*OTUS

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of the random variable g(X) is

X + 75

JX

Example: Expectation of g(X) $A_{\chi} = \{1, 2, 3, 4, 5, 6\}$ $g(X) = 10\chi^{3}$

Suppose we rolled a fair, 6-sided die in a game. Your winnings will be the cube of the number rolled, times 10. Let X be the result of the dice roll. What is your expected winnings?

Agenda

- Linearity Recap
- LOTUS
- Variance
 - Properties of Variance
- Independent Random Variables
 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture

Two Games

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

Two Games

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1

 $\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2 $\mathbb{P}(W_2 = 10) = \frac{1}{3}, \mathbb{P}(W_2 = -5) = \frac{2}{3}$

Which game would you <u>rather</u> play?

Two Games

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1 $\mathbb{P}(W_1 = 2) = \frac{1}{2}$, $\mathbb{P}(W_1 = -1) = \frac{2}{2}$

$$\mathbb{E}(W_1)=0$$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2 $\mathbb{P}(W_2 = 10) = \frac{1}{3}$, $\mathbb{P}(W_2 = -5) = \frac{2}{3}$ $\mathbb{E}(W_2) = 0$ Which game would you rather play?Somehow, Game 2 has higher volatility!

Same expectation, but clearly very different distribution. We want to capture the difference – New concept: Variance

Variance (Intuition, First Try) $\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$ $\mathbb{E}(W_1) = 0$ $2/3 = \frac{1}{2}, \frac{1}{3}$

New quantity (random variable): How far from the expectation? $\Delta(W_1) = W_1 - E[W_1]$

Variance (Intuition, First Try)

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\mathbb{E}(W_1) = 0$$

$$\mathbb{E}(W_1) = 0$$

$$\mathbb{E}(W_1) = 0$$

$$\mathbb{E}(W_1) = 0$$

New quantity (random variable): How far from the expectation?

 $\Delta(W_1) = W_1 - E[W_1]$

$$E[\Delta(W_1)] = E[W_1 - E[W_1]]$$
$$= E[W_1] - E[E[W_1]]$$
$$= E[W_1] - E[W_1]$$
$$= 0$$

Variance (Intuition, Better Try) $\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$ $\mathbb{E}(W_1) = 0$ $\frac{2}{3}$ $\frac{2}{3} = \frac{1}{3} = \frac{1}{3}$

A better quantity (random variable): How far from the expectation? $\Delta(W_1) = (W_1 - E[W_1])^2$

$$E[\Delta(W_1)] = E[(W_1 - E[W_1])^2]$$

Variance (Intuition, Better Try) $\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$ $\mathbb{E}(W_1) = 0$ $\frac{2}{3} = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$

A better quantity (random variable): How far from the expectation? $\Delta(W_1) = (W_1 - E[W_1])^2$ $\mathbb{P}(\Delta(W_1) = (1) = \begin{bmatrix} 2\\ 3 \end{bmatrix}$ $\mathbb{P}(\Delta(W_1) = 4) = \begin{bmatrix} 1\\ 3 \end{bmatrix}$ $\mathbb{P}(\Delta(W_1) = 4) = \begin{bmatrix} 1\\ 3 \end{bmatrix}$

A better quantity (random variable): How far from the expectation?

$$\Delta'(W_2) = (W_2 - E[W_2])^2$$
$$\mathbb{P}(\Delta'(W_2) = 25) = \frac{2}{3}$$
$$\mathbb{P}(\Delta'(W_2) = 100) = \frac{1}{3}$$

$$E[\Delta'(W_2)] = E[(W_2 - E[W_2])^2]$$
$$= \frac{2}{3} \cdot 25 + \frac{1}{3} \cdot 100$$
$$= 50$$

We say that W_2 has "higher variance" than W_1 .

Variance
$$\bigvee_{V \not\in (X)}$$

Definition. The variance of a (discrete) RV X is
 $\underbrace{\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right] = \sum_{x} \mathbb{P}_X(x) \cdot \left(x - \mathbb{E}(X)\right)^2}$
Recall $\mathbb{E}(X)$ is a constant, not a random variable itself.

Intuition: Variance is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance

<u>Intuition:</u> Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = 3.5$

$$Var(X) = ? = \sum_{x \in \mathcal{D}_X} \mathbb{P}(X = x) (x - E[X])^2$$

= $\frac{1}{6} (1 - 3.5)^2 + \frac{1}{6} (2 - 3.5)^2 + \frac{1}{6} (3 - 3.5)^2$
= $\frac{1}{6} (1 - 3.5)^2 + \frac{1}{6} (2 - 3.5)^2 + \frac{1}{6} (3 - 3.5)^2$

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = 3.5$

$$Var(X) = \sum_{x} \mathbb{P}(X = x) \cdot (x - \mathbb{E}(X))^{2}$$
$$= \frac{1}{6} [(1 - 3.5)^{2} + (2 - 3.5)^{2} + (3 - 3.5)^{2} + (4 - 3.5)^{2} + (5 - 3.5)^{2} + (6 - 3.5)^{2}]$$

$$= \frac{2}{6} [2.5^2 + 1.5^2 + 0.5^2] = \frac{2}{6} \left[\frac{25}{4} + \frac{9}{4} + \frac{1}{4} \right] = \frac{35}{12} \approx 2.91677 \dots$$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs in picture have same expectation

Agenda

- Linearity Recap
- LOTUS
- Variance
 - Properties of Variance
- Independent Random Variables
 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture

Variance – Properties

Va(X-b) = Va(X)

Definition. The **variance** of a (discrete) RV *X* is

$$\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right] = \sum_X \mathbb{P}_X(x) \cdot \left(x - \mathbb{E}(X)\right)^2$$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

-(Proof: Exercise!)

Theorem. $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Variance

Proof: $Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]$ - Recall $\mathbb{E}(X)$ is a **constant** $= \mathbb{E}[X^2 - 2\mathbb{E}(X) \cdot X + \mathbb{E}(X)^2]$ $= \mathbb{E}(X^2) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^2$ (linearity of expectation!) $= \mathbb{E}(X^2) - \mathbb{E}(X)^2$ $\mathbb{E}(X^2)$ and $\mathbb{E}(X)^2$ are different !

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = \frac{21}{6}$
- $\mathbb{E}(X^2) = \frac{91}{6}$

$$Var(X) = \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2} = \frac{91}{6} - \left(\frac{21}{6}\right)^{2} = \frac{105}{36} \approx \underbrace{2.91677}_{g(X)}$$

$$\mathbb{E}\left[g(X)\right]_{g(X)} = \chi^{2}$$

In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Example to show this:

• Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - What is $\mathbb{E}[X]$ and Var(X)? In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - $\mathbb{E}[X] = 0$ and Var(X) = 1
- Let Y = -X
 - What is **E**[*Y*] and **V**ar(*Y*)?

In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - $\mathbb{E}[X] = 0$ and Var(X) = 1
- Let Y = -X
 - -E[Y] = 0 and Var(Y) = 1

What is Var(X + Y)?

Agenda

- Linearity Recap
- LOTUS
- Variance
 - Properties of Variance
- > Independent Random Variables

 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture

Random Variables and Independence $TP(A \cap B) : P(A) P(B)$

Definition. Two random variables *X*, *Y* are **(mutually) independent** if for all *x*, *y*,

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables $X_1, ..., X_n$ are **(mutually) independent** if for all $x_1, ..., x_n$, $\mathbb{P}(X_1 = x_1, ..., X_n = x_n) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n)$ Example

Let *X* be the number of heads in *n* independent coin flips of the same coin with probability *p* of coming up Heads. Let *Y* = X mod 2 be the parity (even/odd) of *X*.

Are *X* and *Y* independent?

$$\begin{array}{c} \text{LIFITH} \quad X = 3 \\ \text{Poll:} \\ \textbf{X} = 3 \\ \text{Y} = 0 \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(Y = 0) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(X = 3) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(X = 3) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(X = 3) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(X = 3) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(X = 3) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(X = 3) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(X = 3) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(X = 3) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(X = 3) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(X = 3) \\ \hline P(X = 3, Y = 0) \xrightarrow{2} P(X = 3) \cdot P(X = 3) \\ \hline P(X = 3, Y = 3) \cdot P(X = 3) \quad P(X = 3) \quad$$

Example

Make 2n independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.

Are *X* and *Y* independent?

Poll:

Agenda

- Linearity Recap
- LOTUS
- Variance
 - Properties of Variance
- Independent Random Variables
 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture
Important Facts about Independent Random Variables

Theorem. If *X*, *Y* independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent, $\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_i^n \operatorname{Var}(X_i)$

Independent Random Variables are nice!

Theorem. If *X*, *Y* independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Proof

Let
$$x_i, y_i, i = 1, 2, ...$$
 be the possible values of X, Y .
 $E[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j)$ independence
 $= \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i) \cdot P(Y = y_j)$
 $= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j)\right)$
 $= E[X] \cdot E[Y]$

Note: NOT true in general; see earlier example $E[X^2] \neq E[X]^2$

38

Proof

not covered

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Proof

$$Var[X+Y$$

$$= E[(X+Y)^{2}] - (E[X+Y])^{2}$$

= Var|X| + Var|Y|

 $= E[X^2 + 2XY + Y^2] - (E[X] + E[Y])^2$

= Var[X] + Var[Y] + 2(E[X]E[Y] - E[X]E[Y])

 $= E[X^{2}] + 2E[XY] + E[Y^{2}] - ((E[X])^{2} + 2E[X]E[Y] + (E[Y])^{2})$

$$= E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2} + 2(E[XY] - E[X]E[Y])$$

Proof not covered

Example – Coin Tosses

Example – Coin Tosses

We flip *n* independent coins, each one heads with probability *p*

- $X_i = \begin{cases} 1, \ i-\text{th outcome is heads} \\ 0, \ i-\text{th outcome is tails.} \end{cases}$
- Z = number of heads

Fact. $Z = \sum_{i=1}^{n} X_i$

$$\mathbb{P}(X_i = 1) = p$$
$$\mathbb{P}(X_i = 0) = 1 - p$$

What is E[Z]? What is Var(Z)?

$$\mathbb{P}(Z=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Note: $X_1, ..., X_n$ are <u>mutually</u> independent! $Var(Z) = \sum_{i=1}^n Var(X_i) = n \cdot p(1-p)$

Note
$$Var(X_i) = p(1-p)$$

Agenda

- Linearity Recap
- LOTUS
- Variance
 - Properties of Variance
- Independent Random Variables
 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture

Basic Problem

Problem: Store a subset *S* of a <u>large</u> set *U*.

Example. U = set of 128 bit strings S = subset of strings of interest

 $|U| \approx 2^{128}$ $|S| \approx 1000$

Two goals:

- 1. Very fast (ideally constant time) answers to queries "Is $x \in S$?"
- 2. Minimal storage requirements.

Bloom Filters: Motivation

- Large universe of possible data items.
- Hash table is stored on disk or in network, so any lookup is expensive.
- Many (if not most) of the lookups return "Not found".

Altogether, this is bad. You're wasting **a lot of time and space** doing lookups for items that aren't even present.

Example:

 Network routers: want to track source IP addresses of certain packets, .e.g., blocked IP addresses.

Bloom Filters: Motivation

- Probabilistic data structure.
- Close cousins of hash tables.
- Ridiculously space efficient
- To get that, make occasional errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements.
- Supports two operations:
 - 1. add(x) adds x to bloom filter
 - contains(x) returns true if x in bloom filter, otherwise returns false
 - If returns false, **definitely** not in bloom filter.
 - If returns true, **possibly** in the structure (some false positives).

Bloom Filters

- Why accept false positives?
 - **Speed** both operations very very fast.
 - Space requires a miniscule amount of space relative to storing all the actual items that have been added.

• Often just 8 bits per inserted item!

Bloom Filters: Initialization

bloom filter t with m = 5 that uses k = 3 hash functions

function INITIALIZE(k,m) **for** i = 1, ..., k: **do** t_i = new bit vector of m 0's

Index →	Θ	1	2	3	4
t1	Θ	Θ	Θ	Θ	Θ
t ₂	Θ	Θ	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	Θ

Bloom Filters: Add

bloom filter t with m = 5 that uses k = 3 hash functions

function ADD(X)
for
$$i = 1, ..., k$$
: **do**
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	Θ	1	2	3	4
t_1	Θ	Θ	Θ	Θ	Θ
t_2	Θ	Θ	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	Θ

bloom filter t of length m = 5 that uses k = 3 hash functions

add("thisisavirus.com")

function ADD(X)
for
$$i = 1, ..., k$$
: **do**
 $t_i[h_i(x)] = 1$

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

Index →	Θ	1	2	3	4
t1	Θ	Θ	1	Θ	Θ
t ₂	Θ	Θ	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	Θ

bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(X) **for** i = 1, ..., k: **do** $t_i[h_i(x)] = 1$ add("thisisavirus.com") h_1 ("thisisavirus.com") $\rightarrow 2$ h_2 ("thisisavirus.com") $\rightarrow 1$

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
t1	Θ	Θ	1	Θ	Θ
t ₂	Θ	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	Θ

bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(X)
for
$$i = 1, ..., k$$
: **do**
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

- h_1 ("thisisavirus.com") $\rightarrow 2$
- $h_2("this is a virus.com") \rightarrow 1$
- h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
t1	Θ	Θ	1	Θ	Θ
t ₂	Θ	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

bloom filter t with m = 5 that uses k = 3 hash functions

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

contains("thisisavirus.com")

Index →	Θ	1	2	3	4
t1	Θ	Θ	1	Θ	Θ
t ₂	Θ	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

True

Index →	Θ	1	2	3	4
t1	Θ	Θ	1	Θ	Θ
t ₂	Θ	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

 h_1 ("thisisavirus.com") $\rightarrow 2$

True

bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("this is a virus.com") $\rightarrow 1$

Index →	Θ	1	2	3	4
t1	Θ	Θ	1	Θ	Θ
t ₂	Θ	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

savirus.com") \rightarrow 2

savirus.com") $\rightarrow 1$

savirus.com") \rightarrow 4

4

 \mathbf{O}

 \mathbf{O}

3

 \mathbf{O}

 \mathbf{O}

 \mathbf{O}

function retu	$contains(\mathbf{x})$ rn $t_1[h_1(x)] == 1$	$\wedge t_2[h_2(x)] == 1$	$\wedge \cdots \wedge t_k[h_k(x)]$	== 1	$h_1("th$ $h_2("th$	nisis Nisis	
	True	True	True		h ₃ ("th	h ₃ ("thisis	
			Index →	Θ	1	2	
			t ₁	Θ	Θ	1	
			t ₂	Θ	1	0	
			t ₃	Θ	Θ	0	

f unction CON return t	$\begin{array}{l} \text{NTAINS}(\mathbf{x}) \\ t_1[h_1(x)] == 1 \end{array}$	$\wedge t_2[h_2(x)] == 1 /$	$\wedge \cdots \wedge t_k[h_k(x)] :$	== 1	h_1 ("thi h_2 ("thi	sısavır sisavir	us.com" us.com"	$) \rightarrow 2$ $) \rightarrow 1$
	True	True	True		h ₃ ("thi	sisavir	us.com") > 4
			Index	Θ	1	2	3	4
Since	e all co	onditions	satisfie	d, retu	rns Tru	e (corr	ectly)]
Since	e all co	onditions	satisfie ^T 1	d, retu v	rns Tru ש	e (corr	ectly) ບ	0
Since	e all co	onditions	satisfie t ₁	d, retu ♡ 0	rns Tru ບ 1	e (corr ⊥ 0	ectly) ບ 0	0 0

Bloom Filters: Contains

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$, otherwise returns False

bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(X)
for
$$i = 1, ..., k$$
: **do**
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

Index →	Θ	1	2	3	4
t1	Θ	Θ	1	Θ	Θ
t ₂	Θ	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash functions

$$h_1$$
("totallynotsuspicious.com") $\rightarrow 1$

Index →	Θ	1	2	3	4
t1	Θ	Θ	1	Θ	Θ
t ₂	Θ	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

function ADD(X)
for
$$i = 1, ..., k$$
: **do**
 $t_i[h_i(x)] = 1$

bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(X)
for
$$i = 1, ..., k$$
: **do**
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") \rightarrow 1

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

Index →	Θ	1	2	3	4
t1	Θ	1	1	Θ	Θ
t ₂	Θ	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash

functions

function ADD(X)
for
$$i = 1, ..., k$$
: **do**
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallvnotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") \rightarrow 4

Index →	Θ	1	2	3	4
t1	Θ	1	1	Θ	Θ
t ₂	1	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash functions add("totallynotsuspicion

function ADD(X) **for** i = 1, ..., k: **do** $t_i[h_i(x)] = 1$

> Collision, is already set to 1

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") \rightarrow 1

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

h_3 ("totallynotsuspicious.com") \rightarrow 4

Index →	Θ	1	2	3	4
t1	Θ	1	1	Θ	Θ
t ₂	1	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash functions add("totallynotsuspicion

function ADD(X) **for** i = 1, ..., k: **do** $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") \rightarrow 1

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
t1	Θ	1	1	Θ	Θ
t ₂	1	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash functions contains("verynormalsite.com")

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Index →	Θ	1	2	3	4
t1	Θ	1	1	Θ	Θ
t ₂	1	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ contains("verynormalsite.com")

 $h_1("verynormalsite.com") \rightarrow 2$

True

Index →	Θ	1	2	3	4
t1	Θ	1	1	Θ	Θ
t ₂	1	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

True True

contains("verynormalsite.com")

- $h_1("very normal site.com") \rightarrow 2$
- $h_2("very normal site.com") \rightarrow 0$

Index →	Θ	1	2	3	4
t1	Θ	1	1	Θ	Θ
t ₂	1	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

True

True

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

 $h_1("verynormalsite.com") \rightarrow 2$

 $h_2("very normal site.com") \rightarrow 0$

 $h_3("verynormalsite.com") \rightarrow 4$

Index →	Θ	1	2	3	4
t1	Θ	1	1	Θ	Θ
t ₂	1	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

unction CON return <i>t</i>	TAINS(X) ${}_{1}[h_{1}(x)] == 1$ True	$\wedge t_2[h_2(x)] == 1 \wedge \cdot$ True	$\cdots \wedge t_k[h_k(x)] == 1$ True		h_1 ("very h_2 ("very h_3 ("very	ynormal ynormal <mark>ynormal</mark>	site.co site.co <mark>site.co</mark>	$\begin{array}{l} m'') \rightarrow 2\\ m'') \rightarrow 0\\ m'') \rightarrow 4 \end{array}$
			Index	Θ	1	2	3	4
Since all conditions satisfied, re-					urns Tru	e (inco	orrectly	()
			t1	Θ	1	1	Θ	Θ
			t ₂	1	1	Θ	Θ	Θ

Bloom Filters: Summary

- An empty bloom filter is an empty k x m bit array with all values initialized to zeros
 - k = number of hash functions
 - m = size of each array in the bloom filter
- add(x) runs in O(k) time
- contains(x) runs in O(k) time
- requires O(km) space (in bits!)
- Probability of false positives from collisions can be reduced by increasing the size of the bloom filter
Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be space-efficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Bloom Filters: Many Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...

It's typical of randomized algorithms and randomized data structures to be...

- Simple
- Fast
- Efficient
- Elegant
- Useful!