CSE 312
 Foundations of Computing II

Lecture 10: More on Discrete RVs

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Agenda

- Linearity Recap \quad
- LOTUS
- Variance
- Properties of Variance ${ }^{\text {a }}$
- Independent Random Variables

N

- Properties of Independent Random Variables
- Application: Bloom Filter
- Read textbook, if time permits we'll go over it in lecture

Recap Linearity of Expectation

Theorem. For any two random variables X and Y (X, Y do not need to be independent)

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\mathbb{E}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)=a_{1} \mathbb{E}\left(X_{1}\right)+\cdots+a_{n} \mathbb{E}\left(X_{n}\right)
$$

For any event A, can define the indicator random variable X for A

$$
X=\left\{\begin{array}{lr}
1 & \text { if event A occurs } \\
0 & \text { if event A does not occur }
\end{array}\right.
$$

$$
\begin{gathered}
\mathbb{P}(X=1)=\mathbb{P}(A) \\
\mathbb{P}(X=0)=1-\mathbb{P}(A)
\end{gathered}
$$

Rotating the table
n people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in front of their own name tag.
Rotate the table by a random number k of positions between 1 and $\mathrm{n}-1$ (equally likely).
X is the number of people that end up front of their own name tag.
What is $\mathrm{E}(\mathrm{X})$?
$X_{i}=1$ if perm i is © thur tog
Decompose: $X=X_{1}+X_{2} \cdots+X_{n}$
LOB: $E[X]=E\left[X_{1}, \ldots+X_{n}\right] *=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]$
Conquer: $E\left[X_{i}\right]=\frac{1}{n-1} \quad \frac{1}{n} \quad \frac{n}{n-1}=E[X]$

Agenda

- Linearity Recap
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- Application: Bloom Filter
- Read textbook, if time permits we'll go over it in lecture

Linearity is special!

$$
g(X)=x^{2} \quad E(g(x)) \stackrel{?}{=} g(E[x])
$$

$$
\begin{aligned}
& \text { In general } \mathbb{E}(g(X)) \neq g(\mathbb{E}(X)) \\
& \text { E.g., } X=\left\{\begin{array}{l}
1 \text { with prob } 1 / 2 \\
-1 \text { with prob } 1 / 2
\end{array}\right. \\
& \qquad \mathbb{E}\left(X^{2}\right) \neq \mathbb{E}(X)^{2} \quad \mathbb{E}[X]=1 \cdot 1 / 2+(-1) \cdot 1 / 2 \\
& =0
\end{aligned}
$$

How DO we compute $\mathbb{E}(g(X))$?

Expectation of $g(X)$ LOTUS

$$
x^{2} \quad x^{3}+75 \quad \sqrt{x}
$$

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value of the random variable $g(X)$ is

$$
\begin{array}{rlr}
g(x) & =x^{2} \\
& =3 X+2 \\
& =x \operatorname{mad} 8
\end{array} \quad E[g(X)]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot \operatorname{Pr}(\omega)
$$

or equivalently
$T(x=3)$
$T P(x: 7)$

Example: Expectation of $g(X)$

$$
\Omega_{x}=\{1,2,3,4,5,6\} \quad g(x)=10 X^{3}
$$

Suppose we rolled a fair, 6 -sided die in a game. Your winnings will be the cube of the number rolled, times 10 . Let X be the result of the dice roll. What is your expected winnings?

$$
\begin{aligned}
& E\left[10 X^{3}\right]=\sum_{x \in \Omega x} g(x) \cdot T(x=y)=\sum_{x \in \Omega x} 10 x^{3} \cdot \frac{1}{6}=\frac{10}{6} \sum_{x} x^{3} \\
& \frac{10}{6}\left(1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}\right) \approx 735
\end{aligned}
$$

Agenda

- Linearity Recap
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- Application: Bloom Filter
- Read textbook, if time permits we'll go over it in lecture

Two Games

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.
$W_{1}=$ payoff in a round of Game 1
$\underbrace{\mathbb{P}\left(W_{1}=2\right)}=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$

Two Games

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.
$W_{1}=$ payoff in a round of Game 1
$\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$
Game 2: In every round, you win $\$ 10$ with probability $1 / 3$, lose $\$ 5$ with probability $2 / 3$.
$W_{2}=$ payoff in a round of Game 2
$\mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3}$
Which game would you rather play?

Two Games

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.
$W_{1}=$ payoff in a round of Game 1
$\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$

$$
\mathbb{E}\left(W_{1}\right)=0
$$

Game 2: In every round, you win $\$ 10$ with probability 1/3, lose $\$ 5$ with probability $2 / 3$.
$W_{2}=$ payoff in a round of Game 2
$\mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3}$

$$
\mathbb{E}\left(W_{2}\right)=0
$$

Which game would you rather play? Somehow, Game 2 has higher volatility!

$$
\begin{aligned}
& \mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3} \\
& \mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3} \\
& 2 / 3
\end{aligned}
$$

Same expectation, but clearly very different distribution. We want to capture the difference - New concept: Variance

Variance (Intuition, First Try)

New quantity (random variable): How far from the expectation?

$$
\Delta\left(W_{1}\right)=W_{1}-E\left[W_{1}\right]
$$

Variance (Intuition, First Try)

$\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$
$\mathbb{E}\left(W_{1}\right)=0$

New quantity (random variable): How far from the expectation?

$$
\Delta\left(W_{1}\right)=W_{1}-E\left[W_{1}\right]
$$

$$
\begin{aligned}
E\left[\Delta\left(W_{1}\right)\right] & =E\left[W_{1}-E\left[W_{1}\right]\right] \\
& =E\left[W_{1}\right]-E\left[E\left[W_{1}\right]\right] \\
& =E\left[W_{1}\right]-E\left[W_{1}\right] \\
& =0
\end{aligned}
$$

Variance (Intuition, Better Try)

$$
\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}
$$

$$
\mathbb{E}\left(W_{1}\right)=0
$$

A better quantity (random variable): How far from the expectation?

$$
\Delta\left(W_{1}\right)=\left(W_{1}-E\left[W_{1}\right]\right)^{2}
$$

$$
E\left[\Delta\left(W_{1}\right)\right]=E\left[\left(W_{1}-E\left[W_{1}\right]\right)^{2}\right]
$$

Variance (Intuition, Better Try)

$\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$

$$
\mathbb{E}\left(W_{1}\right)=0
$$

A better quantity (random variable): How far from the expectation?

$$
\begin{array}{ll}
\Delta\left(W_{1}\right)=\left(W_{1}-E\left[W_{1}\right]\right)^{2} & \\
& E\left[\Delta\left(W_{1}\right)\right]=E\left[\left(W_{1}-E\left[W_{1}\right]\right)^{2}\right] \\
\mathbb{P}\left(\Delta\left(W_{1}\right)=(1)\right)=\frac{2}{3} & =\frac{2}{3} \cdot\left(1+\frac{1}{3} \cdot(4)\right. \\
\mathbb{P}\left(\Delta\left(W_{1}\right)=4\right)=\frac{1}{3} & =2
\end{array}
$$

Variance (Intuition, Better Try)

$$
\mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3}
$$

A better quantity (random variable): How far from the expectation?

$$
\begin{array}{rlr}
\Delta^{\prime}\left(W_{2}\right)=\left(W_{2}-E\left[W_{2}\right]\right)^{2} & E\left[\Delta^{\prime}\left(W_{2}\right)\right] & =E\left[\left(W_{2}-E\left[W_{2}\right]\right)^{2}\right] \\
\mathbb{P}\left(\Delta^{\prime}\left(W_{2}\right)=25\right)=\frac{2}{3} & & =\frac{2}{3} \cdot 25+\frac{1}{3} \cdot 100 \\
& & =50
\end{array}
$$

We say that W_{2} has "higher variance" than W_{1}.

Variance $\quad \operatorname{Var}(X)$

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=\sum_{x} \mathbb{P}_{X}(x) \cdot(x-\mathbb{E}(X))^{2}
$$

> Recall $\mathbb{E}(X)$ is a constant, not a random variable itself.

Intuition: Variance is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=\sum_{x} \mathbb{P}_{X}(x) \cdot(x-\mathbb{E}(X))^{2}
$$

Standard deviation: $\sigma(X)=\sqrt{\operatorname{Var}(X)}$
Recall $\mathbb{E}(X)$ is a constant, not a random variable itself.

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance - Example 1
X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}(X)=3.5$

$$
\begin{aligned}
& \operatorname{Var}(X)=?=\sum_{x \in r_{X}} \mathbb{P}(X=x)(x-E[X])^{2} \\
&= \frac{1}{6}(1-3.5)^{2}+\frac{1}{6}(2-3.5)^{2}+\frac{1}{6}(3-3.5)^{2} \\
&-1 \ldots=
\end{aligned}
$$

Variance - Example 1

X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}(X)=3.5$

$$
\begin{aligned}
& \operatorname{Var}(\mathrm{X})=\sum_{x} \mathbb{P}(X=x) \cdot(x-\mathbb{E}(X))^{2} \\
& =\frac{1}{6}\left[(1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}\right] \\
& =\frac{2}{6}\left[2.5^{2}+1.5^{2}+0.5^{2}\right]=\frac{2}{6}\left[\frac{25}{4}+\frac{9}{4}+\frac{1}{4}\right]=\frac{35}{12} \approx 2.91677 . .
\end{aligned}
$$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs in picture
have same expectation

$$
\sigma^{2}=10
$$

$\sigma^{2}=5.83$

$$
\sigma^{2}=15
$$

$$
\sigma^{2}=19.7
$$

Agenda

- Linearity Recap
- LOTUS
- Variance
- Properties of Variance

-

- Independent Random Variables
- Properties of Independent Random Variables
- Application: Bloom Filter
- Read textbook, if time permits we'll go over it in lecture

Variance - Properties

$$
V_{a}(X-b)=V_{a}(X)
$$

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=\sum_{x} \mathbb{P}_{X}(x) \cdot(x-\mathbb{E}(X))^{2}
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$
(Proof: Exercise!)

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$

Variance

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$

$$
\text { Proof: } \begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[\left(X-\mathbb{E}\left(X^{\gamma}\right)\right)^{2}\right] \\
& =\mathbb{E}\left[X^{2}-2 \mathbb{E}(X) \cdot X+\mathbb{E}(X)^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-2 \mathbb{E}(X) \mathbb{E}(X)+\mathbb{E}(X)^{2} \\
& =\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2} \quad \text { (lineall } \mathbb{E}(X) \text { is a constant of expectation!) } \\
&
\end{aligned}
$$

Variance - Example 1

X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}(X)=\frac{21}{6}$
- $\mathbb{E}\left(X^{2}\right)=\frac{91}{6}$

$$
\begin{aligned}
\operatorname{Var}(X)= & \mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=\frac{105}{36} \approx 2.91677 \\
& E[g(X)] \\
& g(X)=x^{2}
\end{aligned}
$$

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Example to show this:

- Let X be a r.v. with $\operatorname{pmf} \mathbb{P}(X=1)=\mathbb{P}(X=-1)=1 / 2$
- What is $\mathrm{E}[X]$ and $\operatorname{Var}(X)$?

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Example to show this:

- Let X be a r.v. with $\operatorname{pmf} \mathbb{P}(X=1)=\mathbb{P}(X=-1)=1 / 2$
$-\mathrm{E}[X]=0$ and $\operatorname{Var}(X)=1$
- Let $Y=-X$
- What is $\mathrm{E}[Y]$ and $\operatorname{Var}(Y)$?

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=1 / 2$
$-\mathrm{E}[X]=0$ and $\operatorname{Var}(X)=1$
- Let $Y=-X$
$-\mathrm{E}[Y]=0$ and $\operatorname{Var}(Y)=1$

What is $\operatorname{Var}(X+Y)$?

Agenda

- Linearity Recap
- LOTUS
- Variance
- Properties of Variance
* Independent Random Variables
- Properties of Independent Random Variables
- Application: Bloom Filter
- Read textbook, if time permits we'll go over it in lecture

Random Variables and Independence
 $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$

Definition. Two random variables X, Y are (mutually) independent if for all x, y,

$$
\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables X_{1}, \ldots, X_{n} are (mutually) independent if for all x_{1}, \ldots, x_{n},

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}\right) \cdots \mathbb{P}\left(X_{n}=x_{n}\right)
$$

Example

$$
\begin{aligned}
& 1 \% 2=1 \\
& 4 \% 2=0
\end{aligned}
$$

$$
1=F 4
$$

Let X be the number of heads in n independent coin flips of the same coin with probability p of coming up Heads. Let $Y=$ X mod 2 be the parity (even/odd) of X.
Are X and Y independent?

Example

Make $2 n$ independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.
Are X and Y independent?

Agenda

- Linearity Recap
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- Application: Bloom Filter
- Read textbook, if time permits we'll go over it in lecture

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}(X \cdot Y)=\mathbb{E}(X) \cdot \mathbb{E}(Y)$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

Independent Random Variables are nice!

Theorem. If X, Y independent, $\mathbb{E}(X \cdot Y)=\mathbb{E}(X) \cdot \mathbb{E}(Y)$

Proof
Let $x_{i}, y_{i}, i=1,2, \ldots$ be the possible values of X, Y.
$E[X \cdot Y]=\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right)$
$=\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right)$
$=\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right)$
$=E[X] \cdot E[Y]$

Proof not covered

Note: NOT true in general; see earlier example $\mathrm{E}\left[\mathrm{X}^{2}\right]=\mathrm{E}[\mathrm{X}]^{2}$
(Not Covered) Proof of $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$
Proof $\left.\quad \begin{array}{r}\operatorname{Var}[X+Y] \\ \\ =E\left[(X+Y)^{2}\right]-(E[X+Y])^{2} \\ \\ =E\left[X^{2}+2 X Y+Y^{2}\right]-(E[X]+E[Y])^{2} \\ \\ =E\left[X^{2}\right]+2 E[X Y]+E\left[Y^{2}\right]-\left((E[X])^{2}+2 E[X] E[Y]+(E[Y])^{2}\right) \\ \\ =E\left[X^{2}\right]-(E[X])^{2}+E\left[Y^{2}\right]-(E[Y])^{2}+2(E[X Y]-E[X] E[Y]) \\ \\ =\operatorname{Var}[X]+\operatorname{Var}[Y]+2(E[X] E[Y]-E[X] E[Y]) \\ \end{array}\right) \operatorname{Var}[X]+\operatorname{Var}[Y] \quad$.

Proof not covered

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}=\left\{\begin{array}{l}1, i-\text { th outcome is heads } \\ 0, i-\text { th outcome is tails. }\end{array}\right.$

Fact. $Z=\sum_{i=1}^{n} X_{i}$

- $Z=$ number of heads

$$
\begin{aligned}
& \mathbb{P}\left(X_{i}=1\right)=\mathbb{C} \\
& \mathbb{P}\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathrm{E}[Z]$? What is $\operatorname{Var}(Z)$?

$$
n p
$$

$$
\operatorname{Va}\left(x_{i}\right)=E\left[x_{i}^{2}\right]-E\left[x_{i}\right]^{2}
$$

$$
\operatorname{Vor}(Z)=n \operatorname{Var}\left(X_{i}\right)
$$

Note: X_{1}, \ldots, X_{n} are mutually independent!

$$
n p(1-p)
$$

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}=\left\{\begin{array}{l}1, i-\text { th outcome is heads } \\ 0, i-\text { th outcome is tails. }\end{array}\right.$

$$
\text { Fact. } Z=\sum_{i=1}^{n} X_{i}
$$

- $Z=$ number of heads

$$
\begin{aligned}
& \mathbb{P}\left(X_{i}=1\right)=p \\
& \mathbb{P}\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathrm{E}[Z]$? What is $\operatorname{Var}(Z)$?

$$
\mathbb{P}(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note: X_{1}, \ldots, X_{n} are mutually independent!

$$
\operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \cdot p(1-p) \quad \operatorname{Note} \operatorname{Var}\left(X_{i}\right)=p(1-p)
$$

Agenda

- Linearity Recap
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- Application: Bloom Filter
- Read textbook, if time permits we'll go over it in lecture

Basic Problem

Problem: Store a subset S of a large set U.

$$
\begin{array}{rlrl}
\text { Example. } U & =\text { set of } 128 \text { bit strings } & |U| \approx 2^{128} \\
S & =\text { subset of strings of interest } & & |S| \approx 1000
\end{array}
$$

Two goals:

1. Very fast (ideally constant time) answers to queries "Is $x \in S$?"
2. Minimal storage requirements.

Bloom Filters: Motivation

- Large universe of possible data items.
- Hash table is stored on disk or in network, so any lookup is expensive.
- Many (if not most) of the lookups return "Not found".

Altogether, this is bad. You're wasting a lot of time and space doing lookups for items that aren't even present.

Example:

- Network routers: want to track source IP addresses of certain packets, .e.g., blocked IP addresses.

Bloom Filters: Motivation

- Probabilistic data structure.
- Close cousins of hash tables.
- Ridiculously space efficient
- To get that, make occasional errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements.
- Supports two operations:

1. $\operatorname{add}(\mathbf{x})$ - adds x to bloom filter
2. contains(x) - returns true if x in bloom filter, otherwise returns false

- If returns false, definitely not in bloom filter.
- If returns true, possibly in the structure (some false positives).

Bloom Filters

-Why accept false positives?

- Speed - both operations very very fast.
- Space - requires a miniscule amount of space relative to storing all the actual items that have been added.
- Often just 8 bits per inserted item!

Bloom Filters: Initialization

Bloom Filters: Example

bloom filter t with $m=5$ that uses $k=3$ hash functions

function INITIALIZE (k, m) for $i=1, \ldots, k:$ do $t_{i}=$ new bit vector of m 0 's	Index $\boldsymbol{\rightarrow}$	0	1	2	3	4
$\mathbf{t}_{\mathbf{1}}$	0	0	0	0	0	
$\mathbf{t}_{\mathbf{2}}$	0	0	0	0	0	
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	0	

Bloom Filters: Add

Bloom Filters: Example

bloom filter \mathbf{t} with $\mathrm{m}=5$ that uses $\mathrm{k}=3$ hash functions

function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k: \mathbf{d o}$
$t_{i}\left[h_{i}(x)\right]=1$

$$
\begin{aligned}
& \text { add("thisisavirus.com") } \\
& h_{1} \text { ("thisisavirus.com") } \rightarrow 2
\end{aligned}
$$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	0	0	0
$\mathbf{t}_{\mathbf{2}}$	0	0	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	0

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions
add("thisisavirus.com")

$$
\begin{gathered}
\text { function } \operatorname{ADD}(\mathrm{x}) \\
\text { for } i=1, \ldots, k: \text { do } \\
t_{i}\left[h_{i}(x)\right]=1
\end{gathered}
$$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	0	0	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	0

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions
add("thisisavirus. com")

$$
\mathrm{h}_{1}(\text { "thisisavirus.com") } \rightarrow 2
$$

$$
\begin{gathered}
\text { function } \operatorname{ADD}(\mathrm{x}) \\
\text { for } i=1, \ldots, k: \text { do } \\
t_{i}\left[h_{i}(x)\right]=1 \\
\hline
\end{gathered}
$$

$$
h_{2}(\text { "thisisavirus.com") } \rightarrow 1
$$

$$
h_{3}(\text { "thisisavirus.com") } \rightarrow 4
$$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	0	$\mathbf{1}$	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	0

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions

> add("thisisavirus. com")

function $\operatorname{ADD}(\mathrm{x})$
 for $i=1, \ldots, k$: do $t_{i}\left[h_{i}(x)\right]=1$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	0	$\mathbf{1}$	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	$\mathbf{1}$

Bloom Filters: Example

bloom filter t with $m=5$ that uses $k=3$ hash functions

```
return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

contains("thisisavirus. com")

Index $\mathbf{7}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	0	$\mathbf{1}$	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	$\mathbf{1}$

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions
contains("thisisavirus.com")
function contains (x)
return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$
True

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	0	$\mathbf{1}$	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	$\mathbf{1}$

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions

contains("thisisavirus.com")

function CONTAINS(x)
return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$ h_{1} ("thisisavirus.com") $\rightarrow 2$
$h_{2}($ "thisisavirus.com") $\rightarrow 1$
True
True

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	0	$\mathbf{1}$	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	$\mathbf{1}$

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions

contains("thisisavirus.com")

function CONTAINS(x)
$\operatorname{return} t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$ h_{1} ("thisisavirus.com") $\rightarrow 2$
$h_{2}($ "thisisavirus.com") $\rightarrow 1$
True
True $h_{3}($ "thisisavirus.com") $\rightarrow 4$

Index $\mathbf{7}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	0	$\mathbf{1}$	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	$\mathbf{1}$

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions
contains("thisisavirus.com")
function CONTAINS (x)
return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$

Bloom Filters: Contains

function CONTAINS (x)

$$
\operatorname{return} t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1
$$

Returns True if the bit vector t_{i} for each hash function has
bit 1 at index determined by
$h_{i}(x)$, otherwise returns False

Bloom Filters: False Positives

bloom filter t of length $m=5$ that uses $k=3$ hash functions
add("totallynotsuspicious.com")

function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k:$ do
$t_{i}\left[h_{i}(x)\right]=1$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	1	0	0
$\mathbf{t}_{\mathbf{2}}$	0	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: False Positives

bloom filter t of length $m=5$ that uses $k=3$ hash functions
function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k$: do

$$
t_{i}\left[h_{i}(x)\right]=1
$$

add("totallynotsuspicious.com")

$$
h_{1} \text { ("totallynotsuspicious.com") } \rightarrow 1
$$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	1	0	0
$\mathbf{t}_{\mathbf{2}}$	0	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: False Positives

bloom filter t of length $m=5$ that uses $k=3$ hash functions
add("totallynotsuspicious. com")
function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k$: do $t_{i}\left[h_{i}(x)\right]=1$

$$
\begin{array}{ll}
h_{1}(\text { "totallynotsuspicious.com") } & \rightarrow 1 \\
h_{2}(\text { "totallynotsuspicious.com") } & \rightarrow 0
\end{array}
$$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	$\mathbf{1}$	1	0	0
$\mathbf{t}_{\mathbf{2}}$	0	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: False Positives

bloom filter t of length $m=5$ that uses $k=3$ hash

functions

function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

h. ("totallvnotsusDicious.com") $\rightarrow 1$
$h_{\text {, ("totallvnotsuspicious.com") } \rightarrow 0}$
h_{3} ("totallynotsuspicious.com") $\rightarrow 4$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	$\mathbf{1}$	1	0	0
$\mathbf{t}_{\mathbf{2}}$	$\mathbf{1}$	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: False Positives

bloom filter t of length $m=5$ that uses $k=3$ hash
functions

function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

Collision, is already set to 1 add("totallynotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$
h_{2} ("totallynotsuspicious.com") $\rightarrow 0$
h_{3} ("totallynotsuspicious.com") $\rightarrow 4$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	$\mathbf{1}$	1	0	0
$\mathbf{t}_{\mathbf{2}}$	$\mathbf{1}$	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: False Positives

bloom filter t of length $m=5$ that uses $k=3$ hash
functions

function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

h_{1} ("totallynotsuspicious.com") $\rightarrow 1$
h_{2} ("totallynotsuspicious.com") $\rightarrow 0$
$h_{3}($ "totallynotsuspicious.com") $\rightarrow 4$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	$\mathbf{1}$	1	0	0
$\mathbf{t}_{\mathbf{2}}$	$\mathbf{1}$	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	$\mathbf{1}$

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash

functions

contains("verynormalsite.com")
function $\operatorname{contains}(\mathrm{x})$
\quad return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$

Index $\mathbf{7}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	$\mathbf{1}$	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	1	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash

functions

function CONTAINS (x)
return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$
True

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	1	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	1	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions
contains("verynormalsite.com")
h_{1} ("verynormalsite.com") $\rightarrow 2$
h_{2} ("verynormalsite.com") $\rightarrow 0$
function CONTAINS (x)

$$
\operatorname{return} t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1
$$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	1	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	$\mathbf{1}$	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions contains("verynormalsite.com")

```function CONTAINS \((x)\) return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1\)```				$\begin{array}{ll} h_{1}(\text { "verynormalsite.com") } & \rightarrow 2 \\ h_{2}(\text { "verynormalsite.com") } & \rightarrow 0 \\ h_{3}(\text { "verynormalsite.com" }) & \rightarrow 4 \end{array}$				
True	True	True						
		Index	0	1	2	3	4	
		$\mathrm{t}_{1}$	$\bigcirc$	1	1	0	0	
		$\mathrm{t}_{2}$	1	1	0	0	0	
		$t_{3}$	0	0	0	0	1	

## Bloom Filters: Example

bloom filter $t$ of length $m=5$ that uses $k=3$ hash functions contains("verynormalsite.com")

function $\operatorname{conTAINS}(x)$   return $t_{1}\left[h_{1}(x)\right]==$	$1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$
True	True

$$
\begin{array}{ll}
h_{1}(\text { "verynormalsite.com") } & \rightarrow 2 \\
h_{2}(\text { "verynormalsite.com") } & \rightarrow 0 \\
h_{3}(\text { "verynormalsite.com") } & \rightarrow 4
\end{array}
$$

	Index	0	1	2	3	4
Since all conditions satisfied, returns True (incorrectly)						
	$\mathrm{t}_{1}$	0	1	1	0	0
	$\mathrm{t}_{2}$	1	1	0	0	0
	$t_{3}$	0	0	0	0	1

## Bloom Filters: Summary

- An empty bloom filter is an empty $\mathrm{k} \times \mathrm{m}$ bit array with all values initialized to zeros
- $k=$ number of hash functions
- $m=$ size of each array in the bloom filter
- $\operatorname{add}(x)$ runs in $O(k)$ time
- contains $(x)$ runs in $O(k)$ time
- requires $\mathrm{O}(\mathrm{km})$ space (in bits!)
- Probability of false positives from collisions can be reduced by increasing the size of the bloom filter


## Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be space-efficient
- Want it so that can check if a URL is in structure:
- If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
- If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.


## Bloom Filters: Many Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...


## Bloom Filters

It's typical of randomized algorithms and randomized data structures to be...

- Simple
- Fast
- Efficient
- Elegant
- Useful!

