
CSE 312

Foundations of Computing II

Lecture 10: More on Discrete RVs
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Slide Credit: Based on Stefano Tessaro’s slides for 312 19au 

incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & myself ☺

Aleks Jovcic



Agenda

• Linearity Recap

• LOTUS

• Variance

– Properties of Variance

• Independent Random Variables

– Properties of Independent Random Variables

• Application: Bloom Filter

– Read textbook, if time permits we’ll go over it in lecture
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Recap Linearity of Expectation

3

Theorem. For any two random variables 𝑋 and 𝑌 (𝑋, 𝑌 do not need to be independent)

𝔼(𝑋 + 𝑌) = 𝔼(𝑋) + 𝔼(𝑌).   

Theorem. For any random variables 𝑋1, … , 𝑋𝑛, and real numbers 𝑎1, … , 𝑎𝑛 ∈ ℝ,

𝔼(𝑎1𝑋1 +⋯+ 𝑎𝑛𝑋𝑛) = 𝑎1𝔼(𝑋1) + ⋯+ 𝑎𝑛𝔼(𝑋𝑛).   

For any event A, can define the indicator random variable X for A 

𝑋 = ቊ
1 𝑖𝑓 𝑒𝑣𝑒𝑛𝑡 𝐴 𝑜𝑐𝑐𝑢𝑟𝑠
0 𝑖𝑓 𝑒𝑣𝑒𝑛𝑡 𝐴 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟

ℙ 𝑋 = 1 = ℙ 𝐴
ℙ 𝑋 = 0 = 1 − ℙ 𝐴



Rotating the table

n people are sitting around a circular table. There is a name tag in each 
place. Nobody is sitting in front of their own name tag.

Rotate the table by a random number k of positions between 1 and n-1 
(equally likely).

X is the number of people that end up front of their own name tag.

What is E(X)?

Decompose:

LOE:

Conquer:



Agenda

• Linearity Recap

• LOTUS

• Variance

– Properties of Variance

• Independent Random Variables

– Properties of Independent Random Variables

• Application: Bloom Filter

– Read textbook, if time permits we’ll go over it in lecture
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In general 𝔼 𝑔(𝑋) ≠ 𝑔(𝔼 𝑋 )

E.g., 𝑋 = ቊ
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 1/2
−1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 1/2

○ 𝔼 𝑋2 ≠ 𝔼 𝑋 2

How DO we compute 𝔼 𝑔(𝑋) ? 

Linearity is special!



Expectation of 𝑔(𝑋)

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected value of the 
random variable 𝑔(𝑋) is

E 𝑔(𝑋) = 

𝜔∈Ω

𝑔(𝑋 𝜔 ) ⋅ Pr(𝜔)

or equivalently

E 𝑔(𝑋) = 

𝑥∈𝑋(Ω)

𝑔(𝑥) ⋅ Pr(𝑋 = 𝑥)
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Example: Expectation of 𝑔(𝑋)

Suppose we rolled a fair, 6-sided die in a game. Your winnings 
will be the cube of the number rolled, times 10. Let 𝑋 be the 
result of the dice roll. What is your expected winnings?

𝐸 10𝑋3 =

8



Agenda

• Linearity Recap

• LOTUS

• Variance

– Properties of Variance

• Independent Random Variables

– Properties of Independent Random Variables

• Application: Bloom Filter

– Read textbook, if time permits we’ll go over it in lecture
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Two Games

10

Game 1: In every round, you win $2 with probability 1/3, lose $1 with 
probability 2/3. 

𝑊1 = payoff in a round of Game 1

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3



Two Games

11

Game 1: In every round, you win $2 with probability 1/3, lose $1 with 
probability 2/3. 

Game 2: In every round, you win $10 with probability 1/3, lose $5 with 
probability 2/3. 

Which game would you rather play?

𝑊1 = payoff in a round of Game 1

𝑊2 = payoff in a round of Game 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

ℙ 𝑊2 = 10 =
1

3
, ℙ 𝑊2 = −5 =

2

3



Two Games

12

Game 1: In every round, you win $2 with probability 1/3, lose $1 with 
probability 2/3. 

Game 2: In every round, you win $10 with probability 1/3, lose $5 with 
probability 2/3. 

Which game would you rather play?

𝑊1 = payoff in a round of Game 1

𝑊2 = payoff in a round of Game 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

𝔼(𝑊2) = 0

𝔼(𝑊1) = 0

ℙ 𝑊2 = 10 =
1

3
, ℙ 𝑊2 = −5 =

2

3

Somehow, Game 2 has higher volatility!



Two Games
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0 +10−5

0−1 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

ℙ 𝑊2 = 10 =
1

3
, ℙ 𝑊2 = −5 =

2

3

2/3 1/3

1/3

2/3

Same expectation, but clearly very different distribution. 

We want to capture the difference – New concept: Variance



Variance (Intuition, First Try)
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0−1 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

2/3 1/3

New quantity (random variable): How far from the expectation?

Δ(𝑊1) = 𝑊1 − 𝐸[𝑊1]

𝔼 𝑊1 = 0



Variance (Intuition, First Try)
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0−1 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

2/3 1/3

New quantity (random variable): How far from the expectation?

Δ(𝑊1) = 𝑊1 − 𝐸[𝑊1]
𝐸[Δ 𝑊1 ] = 𝐸[𝑊1 − 𝐸 𝑊1 ]

= 𝐸 𝑊1 − 𝐸 𝐸 𝑊1

= 𝐸 𝑊1 − 𝐸 𝑊1

= 0

𝔼 𝑊1 = 0



Variance (Intuition, Better Try)
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0−1 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

2/3 1/3

A better quantity (random variable): How far from the expectation?

Δ(𝑊1) = 𝑊1 − 𝐸[𝑊1]
2

𝐸[Δ 𝑊1 ] = 𝐸[ 𝑊1 − 𝐸 𝑊1
2]

𝔼 𝑊1 = 0



Variance (Intuition, Better Try)
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0−1 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

2/3 1/3

A better quantity (random variable): How far from the expectation?

Δ(𝑊1) = 𝑊1 − 𝐸[𝑊1]
2

ℙ(Δ(𝑊1) = 1) =
2

3

ℙ(Δ(𝑊1) = 4) =
1

3

𝐸[Δ 𝑊1 ] = 𝐸[ 𝑊1 − 𝐸 𝑊1
2]

=
2

3
⋅ 1 +

1

3
⋅ 4

= 2

𝔼 𝑊1 = 0



Variance (Intuition, Better Try)
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0 +10−5

ℙ 𝑊2 = 10 =
1

3
, ℙ 𝑊2 = −5 =

2

3

1/32/3

A better quantity (random variable): How far from the expectation?

Δ′(𝑊2) = 𝑊2 − 𝐸[𝑊2]
2

ℙ(Δ′(𝑊2) = 25) =
2

3

ℙ(Δ′(𝑊2) = 100) =
1

3

𝐸[Δ′ 𝑊2 ] = 𝐸[ 𝑊2 − 𝐸 𝑊2
2]

=
2

3
⋅ 25 +

1

3
⋅ 100

= 50



Variance
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0−1 22/3 1/3

0 +10−5 1/32/3 𝔼 Δ′ = 50

𝔼 Δ′ = 2

We say that 𝑊2 has “higher variance” than 𝑊1.  

𝑊2

𝑊1



Variance
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Definition. The variance of a (discrete) RV 𝑋 is

Var 𝑋 = 𝔼 𝑋 − 𝔼 𝑋
2
= σ𝑥𝕡𝑋 𝑥 ⋅ 𝑥 − 𝔼 𝑋

2

Recall 𝔼 𝑋 is a 
constant, not a random 
variable itself. 

Intuition: Variance is a quantity that measures, in expectation, how 
“far” the random variable is from its expectation. 



Variance
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Definition. The variance of a (discrete) RV 𝑋 is

Var 𝑋 = 𝔼 𝑋 − 𝔼 𝑋
2
= σ𝑥𝕡𝑋 𝑥 ⋅ 𝑥 − 𝔼 𝑋

2

Standard deviation: 𝜎 𝑋 = Var(𝑋)
Recall 𝔼 𝑋 is a 
constant, not a random 
variable itself. 

Intuition: Variance (or standard deviation) is a quantity that measures, 
in expectation, how “far” the random variable is from its expectation. 



Variance – Example 1

𝑋 fair die

• ℙ 𝑋 = 1 = ⋯ = ℙ 𝑋 = 6 = 1/6

• 𝔼 𝑋 = 3.5

22

Var X =?



Variance – Example 1

𝑋 fair die

• ℙ 𝑋 = 1 = ⋯ = ℙ 𝑋 = 6 = 1/6

• 𝔼 𝑋 = 3.5

23

Var X = σ𝑥ℙ 𝑋 = 𝑥 ⋅ 𝑥 − 𝔼 𝑋
2

=
1

6
1 − 3.5 2 + 2 − 3.5 2 + 3 − 3.5 2 + 4 − 3.5 2 + 5 − 3.5 2 + 6 − 3.5 2

=
2

6
2.52 + 1.52 + 0.52 =

2

6

25

4
+
9

4
+
1

4
=
35

12
≈ 2.91677…



Variance in Pictures

Captures how much 
“spread’ there is in a pmf

All pmfs in picture 

have same expectation

24



Agenda

• Linearity Recap

• LOTUS

• Variance

– Properties of Variance

• Independent Random Variables

– Properties of Independent Random Variables

• Application: Bloom Filter

– Read textbook, if time permits we’ll go over it in lecture
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Variance – Properties 
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Definition. The variance of a (discrete) RV 𝑋 is

Var 𝑋 = 𝔼 𝑋 − 𝔼 𝑋
2
= σ𝑥𝕡𝑋 𝑥 ⋅ 𝑥 − 𝔼 𝑋

2

Theorem. Var 𝑋 = 𝔼(𝑋2) − 𝔼 𝑋 2

Theorem. For any 𝑎, 𝑏 ∈ ℝ, Var 𝑎 ⋅ 𝑋 + 𝑏 = 𝑎2 ⋅ Var 𝑋

(Proof: Exercise!)



Variance
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Theorem. Var 𝑋 = 𝔼(𝑋2) − 𝔼 𝑋 2

Proof: Var 𝑋 = 𝔼 𝑋 − 𝔼 𝑋
2

= 𝔼 𝑋2 − 2𝔼 𝑋 ⋅ 𝑋 + 𝔼 𝑋 2

= 𝔼 𝑋2 − 2𝔼 𝑋 𝔼 𝑋 + 𝔼 𝑋 2

= 𝔼 𝑋2 − 𝔼 𝑋 2 (linearity of expectation!)

Recall 𝔼 𝑋 is a constant

𝔼 𝑋2 and 𝔼 𝑋 2

are different !



Variance – Example 1

𝑋 fair die

• ℙ 𝑋 = 1 = ⋯ = ℙ 𝑋 = 6 = 1/6

• 𝔼 𝑋 =
21

6

• 𝔼 𝑋2 =
91

6

28

Var X = 𝔼 𝑋2 − 𝔼 𝑋 2 =
91

6
−

21

6

2

=
105

36
≈ 2.91677



In General, Var 𝑋 + 𝑌 ≠ Var 𝑋 + Var(𝑌)

Example to show this:

• Let 𝑋 be a r.v. with pmf ℙ 𝑋 = 1 = ℙ 𝑋 = −1 = 1/2

– What is E[𝑋] and Var(𝑋)?
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In General, Var 𝑋 + 𝑌 ≠ Var 𝑋 + Var(𝑌)

Example to show this:

• Let 𝑋 be a r.v. with pmf ℙ 𝑋 = 1 = ℙ 𝑋 = −1 = 1/2

– E 𝑋 = 0 and Var 𝑋 = 1

• Let 𝑌 = −𝑋

– What is E[𝑌] and Var(𝑌)?

30



In General, Var 𝑋 + 𝑌 ≠ Var 𝑋 + Var(𝑌)

Example to show this:

• Let 𝑋 be a r.v. with pmf ℙ 𝑋 = 1 = ℙ 𝑋 = −1 = 1/2

– E 𝑋 = 0 and Var 𝑋 = 1

• Let 𝑌 = −𝑋

– E 𝑌 = 0 and Var 𝑌 = 1

What is Var(𝑋 + 𝑌)?

31



Agenda

• Linearity Recap

• LOTUS

• Variance

– Properties of Variance

• Independent Random Variables

– Properties of Independent Random Variables

• Application: Bloom Filter

– Read textbook, if time permits we’ll go over it in lecture
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Random Variables and Independence
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Definition. Two random variables 𝑋, Y are (mutually) independent if 
for all 𝑥, 𝑦,

ℙ 𝑋 = 𝑥, 𝑌 = 𝑦 = ℙ 𝑋 = 𝑥 ⋅ ℙ(𝑌 = 𝑦)

Definition. The random variables 𝑋1, … , 𝑋𝑛 are (mutually) independent if 
for all 𝑥1, … , 𝑥𝑛,

ℙ 𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛 = ℙ 𝑋1 = 𝑥1 ⋯ℙ(𝑋𝑛 = 𝑥𝑛)

Intuition: Knowing 𝑋 doesn’t help you guess 𝑌 and vice versa 



Example

Let 𝑋 be the number of heads in 𝑛 independent coin flips of the 
same coin with probability 𝑝 of coming up Heads. Let 𝑌 =
X mod 2 be the parity (even/odd) of 𝑋. 

Are 𝑋 and 𝑌 independent?

34

Poll:

A. Yes
B. No



Example

Make 2𝑛 independent coin flips of the same coin. Let 𝑋 be the 
number of heads in the first 𝑛 flips and 𝑌 be the number of 
heads in the last 𝑛 flips.

Are 𝑋 and 𝑌 independent?

35

Poll:

A. Yes
B. No



Agenda

• Linearity Recap

• LOTUS

• Variance

– Properties of Variance

• Independent Random Variables

– Properties of Independent Random Variables

• Application: Bloom Filter

– Read textbook, if time permits we’ll go over it in lecture
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Important Facts about Independent Random Variables

37

Theorem. If 𝑋, 𝑌 independent, 𝔼 𝑋 ⋅ 𝑌 = 𝔼 𝑋 ⋅ 𝔼(𝑌)

Theorem. If 𝑋, 𝑌 independent, Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

Corollary. If 𝑋1, 𝑋2, …, 𝑋𝑛 mutually independent, 

Var 

𝑖=1

𝑛

𝑋𝑖 =

𝑖

𝑛

Var(𝑋𝑖)



Independent Random Variables are nice!
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Theorem. If 𝑋, 𝑌 independent, 𝔼 𝑋 ⋅ 𝑌 = 𝔼 𝑋 ⋅ 𝔼(𝑌)

Proof

Proof
not covered



(Not Covered) Proof of Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌
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Proof

Theorem. If 𝑋, 𝑌 independent, Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

Proof 
not covered



Example – Coin  Tosses

We flip 𝑛 independent coins, each one heads with probability 𝑝

- 𝑋𝑖 = ቊ
1, 𝑖−th outcome is heads
0, 𝑖−th outcome is tails.

- 𝑍 = number of heads

What is E[𝑍]? What is Var(𝑍)?

40

ℙ 𝑋𝑖 = 1 = 𝑝
ℙ 𝑋𝑖 = 0 = 1 − 𝑝

Fact. 𝑍 = σ𝑖=1
𝑛 𝑋𝑖

Note: 𝑋1, … , 𝑋𝑛 are mutually independent! 



Example – Coin  Tosses

We flip 𝑛 independent coins, each one heads with probability 𝑝

- 𝑋𝑖 = ቊ
1, 𝑖−th outcome is heads
0, 𝑖−th outcome is tails.

- 𝑍 = number of heads

What is E[𝑍]? What is Var(𝑍)?

41

ℙ 𝑋𝑖 = 1 = 𝑝
ℙ 𝑋𝑖 = 0 = 1 − 𝑝

ℙ 𝑍 = 𝑘 = 𝑛
𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘

Fact. 𝑍 = σ𝑖=1
𝑛 𝑋𝑖

Note: 𝑋1, … , 𝑋𝑛 are mutually independent! 

Var 𝑍 =

𝑖=1

𝑛

Var 𝑋𝑖 = 𝑛 ⋅ 𝑝(1 − 𝑝) Note Var 𝑋𝑖 = 𝑝(1 − 𝑝)



Agenda

• Linearity Recap

• LOTUS

• Variance

– Properties of Variance

• Independent Random Variables

– Properties of Independent Random Variables

• Application: Bloom Filter

– Read textbook, if time permits we’ll go over it in lecture
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Basic Problem

43

Problem: Store a subset 𝑆 of a large set 𝑈.

Example. 𝑈 = set of 128 bit strings
𝑆 = subset of strings of interest

𝑈 ≈ 2128

𝑆 ≈ 1000

Two goals: 
1. Very fast (ideally constant time) answers to queries “Is 𝑥 ∈ 𝑆?”
2. Minimal storage requirements.



Bloom Filters: Motivation

• Large universe of possible data items.
• Hash table is stored on disk or in network, so any lookup is expensive.
• Many (if not most) of the lookups return “Not found”.

Altogether, this is bad. You’re wasting a lot of time and space doing lookups 
for items that aren’t even present. 

Example:
• Network routers: want to track source IP addresses 

of certain packets, .e.g., blocked IP addresses.

44



Bloom Filters: Motivation

• Probabilistic data structure.

• Close cousins of hash tables.

• Ridiculously space efficient

• To get that, make occasional errors, specifically false 
positives.
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Bloom Filters

• Stores information about a set of elements.

• Supports two operations:

1. add(x) - adds x to bloom filter 

2. contains(x) - returns true if x in bloom filter, otherwise returns 
false

– If returns false, definitely not in bloom filter.
– If returns true, possibly in the structure (some false 

positives).

46



Bloom Filters

• Why accept false positives?
– Speed – both operations very very fast. 
– Space – requires a miniscule amount of space relative to storing all 

the actual items that have been added.

○ Often just 8 bits per inserted item!

47



Bloom Filters: Initialization

Size of array 
associated to 
each hash 
function. 

Number of 
hash 
functions

for each hash 
function, 
initialize an 
empty bit 
vector of 
size m



Index 
→ 

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example

bloom filter t with m = 5 that uses k = 3 hash functions



Bloom Filters: Add

for each hash 
function hi

Index into ith bit-vector, at 
index produced by hash function 
and set to 1

hi(x) → result of hash 
function hi on x



Bloom Filters: Example

bloom filter t with m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

Index 
→ 

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

h1(“thisisavirus.com”) → 2 



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 

functions
add(“thisisavirus.com”)

h1(“thisisavirus.com”) → 2 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

h2(“thisisavirus.com”) → 1 



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 

functions
add(“thisisavirus.com”)

h2(“thisisavirus.com”) → 1 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 0

h1(“thisisavirus.com”) → 2 

h3(“thisisavirus.com”) → 4 



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 

functions
add(“thisisavirus.com”)

h1(“thisisavirus.com”) → 2 

h3(“thisisavirus.com”) → 4 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

h2(“thisisavirus.com”) → 1 



Bloom Filters: Example

bloom filter t with m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 

functions contains(“thisisavirus.com”)

True

h1(“thisisavirus.com”) → 2 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 

functions contains(“thisisavirus.com”)

TrueTrue
h2(“thisisavirus.com”) → 1 

h1(“thisisavirus.com”) → 2 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 

functions contains(“thisisavirus.com”)

h3(“thisisavirus.com”) → 4 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

TrueTrueTrue

h2(“thisisavirus.com”) → 1 

h1(“thisisavirus.com”) → 2 



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 

functions contains(“thisisavirus.com”)

h3(“thisisavirus.com”) → 4 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

TrueTrueTrue

h2(“thisisavirus.com”) → 1 
h1(“thisisavirus.com”) → 2 

Since all conditions satisfied, returns True (correctly)



Bloom Filters: Contains

Returns True if the bit vector
ti for each hash function has 
bit 1 at index determined by 
hi(x), otherwise returns False



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash 

functions

add(“totallynotsuspicious.com”)

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash 

functions
add(“totallynotsuspicious.com”)

h1(“totallynotsuspicious.com”) → 1 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash 

functions
add(“totallynotsuspicious.com”)

h1(“totallynotsuspicious.com”) → 1 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

h2(“totallynotsuspicious.com”) → 0 



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash 

functions add(“totallynotsuspicious.com”)

h1(“totallynotsuspicious.com”) → 1 

h2(“totallynotsuspicious.com”) → 0 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h3(“totallynotsuspicious.com”) → 4 



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash 

functions add(“totallynotsuspicious.com”)

h1(“totallynotsuspicious.com”) → 1 

h2(“totallynotsuspicious.com”) → 0 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Collision, 
is already 
set to 1

h3(“totallynotsuspicious.com”) → 4 



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash 

functions add(“totallynotsuspicious.com”)

h1(“totallynotsuspicious.com”) → 1 

h2(“totallynotsuspicious.com”) → 0 

h3(“totallynotsuspicious.com”) → 4 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 

functions contains(“verynormalsite.com”)

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 

functions

True

contains(“verynormalsite.com”)

h1(“verynormalsite.com”) → 2 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 

functions

TrueTrue

contains(“verynormalsite.com”)

h2(“verynormalsite.com”) → 0 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h1(“verynormalsite.com”) → 2 



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 

functions

TrueTrueTrue

contains(“verynormalsite.com”)

h3(“verynormalsite.com”) → 4 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h2(“verynormalsite.com”) → 0 

h1(“verynormalsite.com”) → 2 



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 

functions

TrueTrueTrue

contains(“verynormalsite.com”)

h3(“verynormalsite.com”) → 4 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h2(“verynormalsite.com”) → 0 

h1(“verynormalsite.com”) → 2 

Since all conditions satisfied, returns True (incorrectly)



Bloom Filters: Summary

● An empty bloom filter is an empty k x m bit array with all values 
initialized to zeros
○ k = number of hash functions
○ m = size of each array in the bloom filter

● add(x) runs in O(k) time
● contains(x) runs in O(k) time
● requires O(km) space (in bits!)
● Probability of false positives from collisions can be reduced by 

increasing the size of the bloom filter
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Bloom Filters: Application

● Google Chrome has a database of malicious URLs, but it takes a long time to 
query.

● Want an in-browser structure, so needs to be efficient and be space-efficient
● Want it so that can check if a URL is in structure:

○ If return False, then definitely not in the structure (don’t need to do 
expensive database lookup, website is safe)

○ If return True, the URL may or may not be in the structure. Have to perform 
expensive lookup in this rare case.
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Bloom Filters: Many Applications

● Any scenario where space and efficiency are important.
● Used a lot in networking
● In distributed systems when want to check consistency of data across 

different locations, might send a Bloom filter rather than the full set of 
data being stored.

● Google BigTable uses Bloom filters to reduce disk lookups
● Internet routers often use Bloom filters to track blocked IP addresses.
● And on and on…
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Bloom Filters

It’s typical of randomized algorithms and randomized data 
structures to be…

● Simple
● Fast
● Efficient
● Elegant
● Useful!
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