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Agenda

* Linearity Recap @
* LOTUS

* Variance
— Properties of Variance
* Independent Random Variables

— Properties of Independent Random Variables

* Application: Bloom Filter
— Read textbook, if time permits we’ll go over it in lecture



Linearity of Expectation

. Theorem. For any two random variables X and Y (X, Y do not need to be independent)

E(X +Y) = E(X) + E(Y).

_____________________________________________________________________________________________________________________________________________________________________

. Theorem. For any random variables X1, ..., X,,, and real numbers a,, ..., a,, € R,

[E(Clle + oo 4 aan) = allE(Xl) + oo 4 an]E(Xn).

For any event A, can define the indicator random variable X for A e 5
v — 1 if event A occurs . P(X =1 =P
~ |0 if event A does not occur . P(X=0)=1-P(4)

___________________________________________



Rotating the table

n people are sitting around a circular table. There is a name tag in each
place. Nobody is sitting in front of their own name tag.

Rotate the table by a random number k of positions between 1 and n-1
(equally likely).
X is the number of people that end up front of their own name tag.

What is E(X)?

Decompose:

LOE:

Conquer:
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Linearity is special!

In general E(g(X)) # g(E(X))
1 with prob 1/2

By & = 1—1 with prob 1/2

. E(X2) # E(X)?2

How DO we compute E(g(X))?



Expectation of g(X)

Definition. Given a discrete RV X: () = R, the expectation or expected value of the
- random variable g(X) is .

ElgC0] = ) g(X(@)) - Pr(w)

wE)

or equivalently



Example: Expectation of g(X)

Suppose we rolled a fair, 6-sided die in a game. Your winnings
will be the cube of the number rolled, times 10. Let X be the
result of the dice roll. What is your expected winnings?

E[10X3] =
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Two Games

Game 1: In every round, you win $2 with probability 1/3, lose $1 with
probability 2/3.

W, = payoff in a round of Game 1

1 2
P(W; = 2) =§;P(W1 = —1) =3
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Two Games

Game 1: In every round, you win $2 with probability 1/3, lose $1 with
probability 2/3.

W, = payoff in a round of Game 1

1 2
P(W; = 2) =§;P(W1 = —1) =3

Game 2: In every round, you win $10 with probability 1/3, lose s5 with
probability 2/3.
W, = payoff in around of Game 2
1 2
IP)(WZ — 10) — 5 ,[P)(WZ — —5) — 5

Which game would you rather play?
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Two Games

Game 1: In every round, you win $2 with probability 1/3, lose $1 with
probability 2/3.

W, = payoff in a round of Game 1
1 2 E(W;) = 0

Game 2: In every round, you win $10 with probability 1/3, lose s5 with
probability 2/3.

W, = payoff in around of Game 2

P(W, =10) =~ ,P(W, = —5) == E(W,) =0

Which game would you rather play? Somehow, Game 2 has higher volatility!
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Two Games e 1/3

1 2
I[D(W1 — 2) =§,IP(W1 — —1) — 7

3
I
I

P(W, = 10) =5 ,P(W, = =5) =

2/3
1/3

I | |
—5 0 +10

Same expectation, but clearly very different distribution.
We want to capture the difference — New concept: Variance
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Variance (Intuition, First Try)

E(W;) =0
P(W1=2)=§,[P(W1:_1)=§ ( 1)

2/3 _1 o 2 1/3

New quantity (random variable): How far from the expectation?

A(W;) = Wy — E[W]]
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Variance (Intuition, First Try)

E(W;) =0
P(W1=2)=§,[P>(W1:_1)=§ ( 1)

2/3 _1 o 2 1/3

New quantity (random variable): How far from the expectation?

A(Wy) = Wy — E[W;]
(W1) 1 [W1 E[A(W;)] = E[W; — E|W4]]

= E[W,] — E[E[W,]]

= E[W;] — E[W;]
=0
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Variance (Intuition, Better Try)

1 2
]P(W1 — 2) =§»P(W1 — _1) :g

2/3 _1 o 2 1/3

A better quantity (random variable): How far from the expectation?

A(Wy) = (W, — E[W;])?
(W) = (W, [W1]) E[A(W))] = E[(W; — E[W;])?]
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Variance (Intuition, Better Try)

1 2
]P(W1 — 2) =§»P(W1 — _1) :g

2/3 _1 o 2 1/3

A better quantity (random variable): How far from the expectation?

A(Wy) = (W, — E[W;])?
(W) = (W, [W1]) E[A(W))] = E[(W; — E[W;])?]

PAW,) = 1) = :
1+54

W= Wl

2
PAW,) = 4) = 32
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Variance (Intuition, Better Try)
P(W, =10) = - ,P(W, = —5) ==

—
I +10 1/3

2/3 -5 0

A better quantity (random variable): How far from the expectation?

N (W) = (W, — E[W,])?
(W) = (W, [(W2]) E[A'(W5)] = E[(W, — E[W,5])?]

=Z.25+=-100
37073

= 50

Wl wl o

P(A(W,) = 100) =
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Variance
E(A") =2

W, .
2/3 _1 o 2 1/3

WZ | I
2/3 -5 0 E(A) =50 410 1/3

We say that I/, has “higher variance’ than I//;.
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Variance

_____________________________________________________________________________________________________________________________________________________________________
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Recall E(X) is a .
-constant, not a random
‘variable itself.

Intuition: Variance is a quantity that measures, in expectation, how
“far”’ the random variable is from its expectation.
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Variance

_____________________________________________________________________________________________________________________________________________________________________
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Recall E(X) is a .
-constant, not a random
‘variable itself.

Standard deviation: o(X) = /Var(X)

Intuition: Variance (or standard deviation) is a quantity that measures,
in expectation, how “far” the random variable is from its expectation.
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Variance — Example 1

X fair die
e PX=1)=--=PX=6)=1/6
« E(X)=3.5

Var(X) =?
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Variance — Example 1

X fair die
e PX=1)=---=PX=6)=1/6
« E(X)=23.5

Var(X) = 5, P(X = %) - (x — E(X))’

| =

2 2 21 _ 2
|2.5% + 1.5 + 0.5°] = 64+4+4

O\Il\.)

2125 9 1| 35
12

[(1-35)?+((2—-35?+(3—35?+(4—-352%+(5-

— =~ 2.91677 ...

3.5)% + (6 —

3.5)4]
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Variance in Pictures

Captures how much
“spread’ there isina pmf

All pmfs in picture
have same expectation

02 =15.83

o2=10

o2=15

o2=19.7

o
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Linearity Recap
LOTUS

Variance
— Properties of Variance -

Independent Random Variables

— Properties of Independent Random Variables

Application: Bloom Filter
— Read textbook, if time permits we’ll go over it in lecture
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Variance - Properties

_____________________________________________________________________________________________________________________________________________________________________

 Definition. The variance of a (discrete) RV X is

Var(X) = E[(X — E(X))’| = T, px @) - (x — EX))’

_____________________________________________________________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________________________________________
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____________________________________________________________________________________________

Variance

Proof: Var(X) = E [ (X — EQX))* Recall E(X) is a constant

_______________________________________________________

= E[X2 — 2E(X) - X + E(X)?]
= E(X?) — 2E(X)E(X) + E(X)?

(linearity of expectation!)

=EX*) -EX)* T

T E(X® and EX)?
are different!
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Variance — Example 1

X fair die
e PX=1)=--=PX =6)=1/6
« EX) ==

+ E(X?) ==

Var(X) = E(X?) — E(X)* = % — (%

)2

~ 105

= —= 2.91677
36
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In General, Var(X + Y) # Var(X) + Var(Y)

Example to show this:
e Let X bearv.withpmfP(X =1)= P(X=-1)=1/2
— Whatis E[X| and Var(X)?

29



In General, Var(X + Y) # Var(X) + Var(Y)

Example to show this:

e Let X bearv.withpmfP(X =1)= P(X=-1)=1/2
—E[X]=0andVar(X) =1

* LletY = —X
—Whatis E|Y | and Var(Y)?
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In General, Var(X + Y) # Var(X) + Var(Y)

Example to show this:

e Let X bearv.withpmfP(X =1)= P(X=-1)=1/2
—E[X]=0andVar(X) =1

e LetY = —X
—E[Y]=0and Var(Y) =1

Whatis Var(X + Y)?

31



Agenda

Linearity Recap
LOTUS

Variance
— Properties of Variance

Independent Random Variables &

— Properties of Independent Random Variables

Application: Bloom Filter
— Read textbook, if time permits we’ll go over it in lecture
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Random Variables and Independence

_____________________________________________________________________________________________________________________________________________________________________

' Definition. Two random variables X, Y are (mutually) independent if
forall x, v,

P(X=x,Y=y)=PX =x) -P(Y =y)

_____________________________________________________________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________________________________________________________

Definition. The random variables X1, ..., X;, are (mutually) independent if
forall x;, ..., xy, |

_____________________________________________________________________________________________________________________________________________________________________



Example

Let X be the number of heads in n independent coin flips of the
same coin with probability p of coming up Heads. Let ¥V =
X mod 2 be the parity (even/odd) of X.

Are X and Y independent?

A. Yes
B. No

34



Example

Make 2n independent coin flips of the same coin. Let X be the
number of heads in the first n flips and Y be the number of
heads in the last n flips.

Are X and Y independent?

A. Yes
B. No
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Agenda

Linearity Recap
LOTUS

Variance
— Properties of Variance

Independent Random Variables
— Properties of Independent Random Variables @

Application: Bloom Filter
— Read textbook, if time permits we’ll go over it in lecture



Important Facts about Independent Random Variables

___________________________________________________________________________________________________________________________________________________

___________________________________________________________________________________________________________________________________________________

————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

Corollary. If X, X5, ..., X,, mutually independent,

Var (Zn: Xl-> = Zn: Var(X;)

=1
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Independent Random Variables are nice!

___________________________________________________________________________________________________________________________________________________

Let x;,y;,2 = 1,2,... be the possible values of X,Y.

E[XY] - ZZ$1 "Yj P(X =T \NY = yj) 7independence
i

>odwiy PX =) P(Y =y))

= in-P(X:ari)- (Zyj 'P(ij))
~ B[X]- B[]

Note: NOT true in general; see earlier example E[X?]#E[X]?

Proof
not covered



(Not Covered) Proof of Var(X 4+ Y) = Var(X) + Var(Y)

___________________________________________________________________________________________________________________________________________________

Proof Var[X +Y]
= F[(X +Y)] — (E[X +Y))*

— F[X? 4+ 2XY +Y?| — (E[X] + E[Y])?

Proof

= E[X?| + 2E[XY] + B[Y?] - (BIX])* +2B[X]EN] + (EDD?)| | 0 ooy

= E[X?] — (E[X])’ + E[Y®] — (E[Y])* + 2(E[XY] - E[X]E[Y])
/
— Var[X] + Var[Y] + 2(E[X]E[Y] — E[X]E[Y])

= Var X|+ Var|Y] o




Example - Coin Tosses

We flip n independent coins, each one heads with probability p

. 1, i—th outcome is heads - Fact.Z =X, X;
‘|0, i—thoutcome s tails. . I |

- Z =number of heads PX, = 1) = p
P(X;=0)=1—p

Whatis E|Z|? What is Var(Z)?

Note: X4, ..., X,, are mutually independent!

_________________________________________
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Example - Coin Tosses

We flip n independent coins, each one heads with probability p

. 1, i—th outcome is heads Fact. Z = ),I_ | X; e
‘10, i—th outcome is tails.

- Z = number of heads - P(X, = 1) = p
PX;=0))=1-p |

____________________________________________

Whatis E[Z]2 What is Var(Z)?




Agenda

Linearity Recap
LOTUS

Variance
— Properties of Variance

Independent Random Variables

— Properties of Independent Random Variables

Application: Bloom Filter
— Read textbook, if time permits we’ll go over it in lecture
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Basic Problem

Problem: Store a subset S of a large set U.

Example. U = set of 128 bit strings U| ~ 2128
S = subset of strings of interest S| ~ 1000

Two goals:
1. Very fast (ideally constant time) answers to queries “Is x € §?”
2. Minimal storage requirements.

43



Bloom Filters: Motivation

Large universe of possible data items.
Hash table is stored on disk or in network, so any lookup is expensive.
Many (if not most) of the lookups return “Not found”.

Altogether, this is bad. You’re wasting a lot of time and space doing lookups
for items that aren’t even present.

Example:

Network routers: want to track source IP addresses
of certain packets, .e.g., blocked IP addresses.

44



Bloom Filters: Motivation

Probabilistic data structure.
Close cousins of hash tables.
Ridiculously space efficient

To get that, make occasional errors, specifically false
positives.

45



Bloom Filters

Stores information about a set of elements.
Supports two operations:
.. add(x) - adds x to bloom filter

.. contains(x) - returns true if x in bloom filter, otherwise returns
false
- If returns false, definitely not in bloom filter.
— If returns true, possibly in the structure (some false
positives).

46



Bloom Filters

* Why accept false positives?
- Speed - both operations very very fast.
- Space - requires a miniscule amount of space relative to storing all
the actual items that have been added.

o Often just 8 bits per inserted item!

47



Bloom Filters: Initialization

Size of array

Number of ted t

hash aSSﬁC;a E 0

functions cac .as
function.

function iN1TIALIZE(K, M)

fori =1 k- do , fTor each hash
> function,

t; = new bit vector of m 0’s initialize an
empty bit

vector of
size m




Bloom Filters: Example

bloom filter t with m

= 5 that uses k = 3 hash functions

Index 0 1 2 3
>
t, 0 0 0 0
t, 0 0 0 0
t, 0) 0 0 0




Bloom Filters: Add

function ADD(X)
fori = ],,“,k:do . for each hash

function h;

tilhi(x)] =1

Index into ith bit-vector, at h;(x) > result of hash
index produced by hash function function h; on x
and set to 1




Bloom Filters: Example

bloom filter t with m = 5 that uses k = 3 hash functions

function App(x) add (“thisisavirus.com”)
fori=1,...,k:do h,(“thisisavirus.com”) > 2
tilhi(x)] =1

Index 0) 1 2 3
9
t, 0 0 0 0
t, 0 0 0 0
t, 0 0 0 0




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash
functions

add (¢“thisisavirus.com”)

function ApD(X) h,(“thisisavirus.com”) > 2
fori=1,....k:do h,(“thisisavirus.com”) > 1
tilh;(x)| =1
()] N B B B
9
t, 0 0 1 0
t, 0 0 0 0
t, 0 0 0 0




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash
functions

add (“thisisavirus.com”)
h,(“thisisavirus.com”) > 2

function ApD(x) h,(“thisisavirus.com”) > 1
fori=1,...,k:do h,(“thisisavirus.com”) > 4
ti[hi(x)] =1
Index 0 1 2 3
9

t, 0 0 1 0

t, 0 1 0 0

t, 0 0 0 0




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash
functions

add (“thisisavirus.com”)
h,(“thisisavirus.com”) > 2

function ApDD(X) h,(“thisisavirus.com”) > 1
fori=1,....k:do hy;(“thisisavirus.com”) > 4
tilhi(x)] =1
I[l( )] Index 0 1 2 3
9
t, 0 0 1 0
t, 0 1 0 0
t, 0 0 0 0




Bloom Filters: Example

bloom filter t with m = 5 that uses k = 3 hash functions

f i o o [ d [ d
unction CONTAINS(x) contains(“thisisavirus.com”)

return 1 [ (x)] == 1 Atz[hp(X)] == 1 A --- At [ (x)] ==

Index 0) 1 2 3 4
>
t, 0 0 1 0 0
t, 0 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash
functions contains(“thisisavirus.com”)

h,(“thisisavirus.com”) > 2

1 2 3 4
-

t, 0 0 1 0 0
t, 0 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash
functions contains(“thisisavirus.com”)

h,(“thisisavirus.com”) > 2

h,(“thisisavirus.com”) > 1

1 2 3 4
A

t, 0 0 1 0 0
t, 0 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash

functions contains(“thisisavirus.com”)

h,(“thisisavirus.com”) > 2

h,(“thisisavirus.com”) > 1
hy;(“thisisavirus.com”) > 4

1 2 3 4
-

t, 0 0 1 0 0
t, 0 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash

functions contains(“thisisavirus.com”)
(14 3 3 3 2

function coNTAINS(X) hl( th'!S'!SaV'! rus.com ) > 2
return 1 [71; (x)] == L At [l (x)] == 1 A -+ A 1 [ (x)] == 1 h,(“thisisavirus.com”) > 1
True True True hy;(“thisisavirus.com”) > 4

4

0]

t, 0 1 0 0 0




Bloom Filters: Contains

Returns True 1if the bit vector
t; for each hash function has
bit 1 at 1index determined by
h.(x), otherwise returns False



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash
functions
add (“totallynotsuspicious.com”)

I function AD[;(;()
fori=1,...,k:do

tilhi(x)] =1
Index 0] 1 2 3
9
t, 0 0 1 0
t, © 1 0 0
t; © 0 0 0




Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash

functions
add (“totallynotsuspicious.com”)

function App(X)
fori=1,....k:do

h,(“totallynotsuspicious.com”) > 1

li [ht(x)] =1
Index 0 1 2 3 4
9
t, 0] 0] 1 0] 0]
t, 0] 1 0] 0] 0]
t, 0] 0] 0] 0] 1




Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash

functions
add (“totallynotsuspicious.com”)

function App(X)
fori=1,....k:do

h,(“totallynotsuspicious.com”) > 1

h,(“totallynotsuspicious.com”) > 0

tilhi(x)] =1
Index 0) 1 2 3 4
>
t, 0 1 1 0 0
t, 0 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: False Positives

bloom filter t of length m

functions

function App(x)
fori=1,...,k:do
ti[hi(x)] =1

5 that uses k = 3 hash
add (“totallynotsuspicious.com”)

h.(“totallvnotsuspicious.com”) > 1
h,(“totallvnotsuspicious.com”) > 0

h;(“totallynotsuspicious.com”) > 4

Index 0] 1 2 3 4
>
t, 0) 1 1 0 0
t, 1 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: False Positives

bloom filter t of length m =

functions

function ApD(X)
fori=1,...,k:do

5 that uses k = 3 hash

add (“totallynotsuspicious.com”)
h,(“totallynotsuspicious.com”) > 1

h,(“totallynotsuspicious.com”) > 0

¢ ° o 99
ti[hi(x)] =1 h;(“totallynotsuspicious.com”) > 4
Index 0 1 2 3 4
9
Collision,
is already t, 0 1 1 0 o
set to 1 t, 1 1 0 0 0
t; O 0 0 ©) 1




Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash

functions add (“totallynotsuspicious.com”)
" 11 TP 9
function ApD(X) :l(“tota}&ynotsusp'!C'!ous.com”) > 1
fori=1,...,k:do ,(“totallynotsuspicious.com”) > 0
¢ 1 1 2
G[hdﬁj]==1 hy;(“totallynotsuspicious.com”) > 4
Index 0 1 2 3 4
->
t, 0 1 1 0 0
t, 1 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash

functions contains(“verynormalsite.com”)
function coNTAINS(X)
returnz[21(x)] == 1 Atr[h(x)] ==1A--- At hr(x)] ==
Index 0 1 2 3 4
>
t, 0 1 1 0 0
t, 1 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash

functions contains(“verynormalsite.com”)
function coNTAINS(X) h;(“verynormalsite.com”) > 2
return £, [A1(x)] == L A to[ha(X)] == 1 A - At [ g (x)] == £
True
Index (0] 1 2 3 4
9
t, 0 1 1 0 0
t, 1 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m =

functions

5 that uses k = 3 hash

contains(“verynormalsite.com”)

function coNTAINS(X)

h,(“verynormalsite.com”) > 2

return £, [ (x)] == 1 Atp[ha(x)] == L A -+ Aty (x)] == h,(“verynormalsite.com”) > 0
True True
Index 0] 1 2 3 4
9
t, 0 1 1 0 0
t, 1 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash

functions contains(“verynormalsite.com”)

function coNTAINS(X) hl(“verynormalsite. COm”) > 2
return 11 (21 (x)] == 1 Ata[ha(x)] == 1 A -+ A ti[ i (x)] == h,(“verynormalsite.com”) - 0
True True True hy;(“verynormalsite.com”) > 4

Index 0 1 2 3 4

9

t, 0 1 1 0 0

t, 1 1 0 0 0

t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash

functions

function conTAINS(X)

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) > 2
h,(“verynormalsite.com”) > 0
hy;(“verynormalsite.com”) > 4

return ¢ [h;(x)] == 1 At[hx)] =1A---Ati[h(x)] == 1
True True True
Index




Bloom Filters: Summary

« An empty bloom filteris an empty k x m bit array with all values

initialized to zeros
o k =number of hash functions
o m =size of each array in the bloom filter

e add(x) runsin O(k) time

e contains(x) runs in O(k) time

« requires O(km) space (in bits!)

« Probability of false positives from collisions can be reduced by
increasing the size of the bloom filter
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Bloom Filters: Application

e Google Chrome has a database of malicious URLSs, but it takes a long time to
query.
e« Want anin-browser structure, so needs to be efficient and be space-efficient

e Want it so that can checkif a URL is in structure:
o If return False, then definitely not in the structure (don’t need to do

expensive database lookup, website is safe)
o If return True, the URL may or may not be in the structure. Have to perform

expensive lookup in this rare case.
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Bloom Filters: Many Applications

e Any scenario where space and efficiency are important.

e Used alotin networking
o Indistributed systems when want to check consistency of data across

different locations, might send a Bloom filter rather than the full set of

data being stored.
o Google BigTable uses Bloom filters to reduce disk lookups
e Internetrouters often use Bloom filters to track blocked IP addresses.

e« Andonandon...
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Bloom Filters

It’s typical of randomized algorithms and randomized data
structures to be...

. Simple

« Fast

. Efficient
. Elegant
« Useful!
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