CSE 312

Foundations of Computing II

Lecture 10: More on Discrete RVs

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro's slides for 312 19au

incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Agenda

- Linearity Recap
- LOTUS
- Variance
 - Properties of Variance
- Independent Random Variables
 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture

Recap Linearity of Expectation

Theorem. For any two random variables X and Y(X, Y) do not need to be independent)

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n \in \mathbb{R}$,

$$\mathbb{E}(a_1X_1 + \dots + a_nX_n) = a_1\mathbb{E}(X_1) + \dots + a_n\mathbb{E}(X_n).$$

For any event A, can define the indicator random variable X for A

$$X = \begin{cases} 1 & if \ event \ A \ occurs \\ 0 & if \ event \ A \ does \ not \ occur \end{cases}$$

$$\mathbb{P}(X = 1) = \mathbb{P}(A)$$
$$\mathbb{P}(X = 0) = 1 - \mathbb{P}(A)$$

Rotating the table

n people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in front of their own name tag.

Rotate the table by a random number k of positions between 1 and n-1 (equally likely).

X is the number of people that end up front of their own name tag.

What is E(X)?

Decompose:

LOE:

Conquer:

Agenda

- Linearity Recap
- LOTUS

- Variance
 - Properties of Variance
- Independent Random Variables
 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture

Linearity is special!

In general
$$\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$$

E.g., $X = \begin{cases} 1 & with \ prob \ 1/2 \\ -1 & with \ prob \ 1/2 \end{cases}$
 $\circ \quad \mathbb{E}(X^2) \neq \mathbb{E}(X)^2$

How DO we compute $\mathbb{E}(g(X))$?

Expectation of g(X)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of the random variable g(X) is

$$E[g(X)] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot Pr(\omega)$$

or equivalently

$$E[g(X)] = \sum_{x \in X(\Omega)} g(x) \cdot Pr(X = x)$$

Example: Expectation of g(X)

Suppose we rolled a fair, 6-sided die in a game. Your winnings will be the cube of the number rolled, times 10. Let X be the result of the dice roll. What is your expected winnings?

$$E[10X^3] =$$

Agenda

- Linearity Recap
- LOTUS
- Variance

- Properties of Variance
- Independent Random Variables
 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1

$$\mathbb{P}(W_1=2)=\frac{1}{3}$$
, $\mathbb{P}(W_1=-1)=\frac{2}{3}$

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1

$$\mathbb{P}(W_1=2)=\frac{1}{3}$$
, $\mathbb{P}(W_1=-1)=\frac{2}{3}$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2

$$\mathbb{P}(W_2 = 10) = \frac{1}{3}, \mathbb{P}(W_2 = -5) = \frac{2}{3}$$

Which game would you rather play?

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1

$$\mathbb{P}(W_1=2)=\frac{1}{3}$$
, $\mathbb{P}(W_1=-1)=\frac{2}{3}$

$$\mathbb{E}(W_1) = 0$$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2

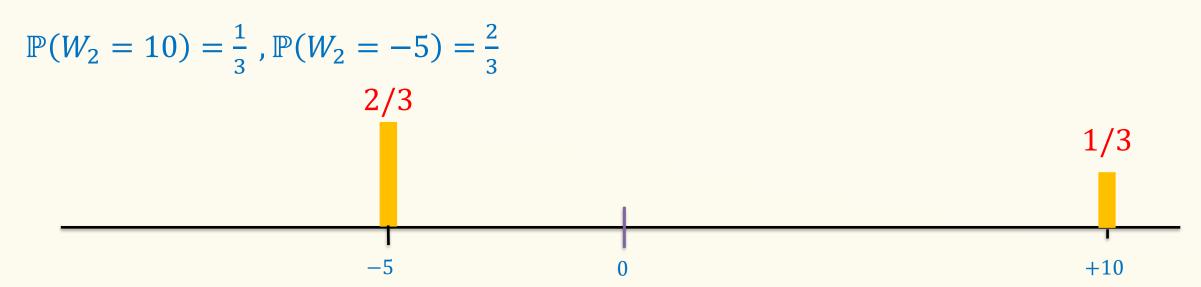
$$\mathbb{P}(W_2 = 10) = \frac{1}{3}$$
, $\mathbb{P}(W_2 = -5) = \frac{2}{3}$

$$\mathbb{E}(W_2)=0$$

Which game would you rather play?

Somehow, Game 2 has higher volatility!

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}$$
, $\mathbb{P}(W_1 = -1) = \frac{2}{3}$



Same expectation, but clearly very different distribution.

We want to capture the difference – New concept: Variance

Variance (Intuition, First Try)

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\frac{2/3}{-1} = 0$$

New quantity (random variable): How far from the expectation?

$$\Delta(W_1) = W_1 - E[W_1]$$

Variance (Intuition, First Try)

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\frac{2/3}{-1}, \mathbb{P}(W_1 = 2) = \frac{1}{3}$$

New quantity (random variable): How far from the expectation?

$$\Delta(W_1) = W_1 - E[W_1]$$

$$E[\Delta(W_1)] = E[W_1 - E[W_1]]$$

$$= E[W_1] - E[E[W_1]]$$

$$= E[W_1] - E[W_1]$$

$$= 0$$

Variance (Intuition, Better Try)

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\frac{2/3}{-1} = 0$$

A better quantity (random variable): How far from the expectation?

$$\Delta(W_1) = (W_1 - E[W_1])^2$$

$$E[\Delta(W_1)] = E[(W_1 - E[W_1])^2]$$

Variance (Intuition, Better Try)

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\frac{2/3}{-1} = 0$$

A better quantity (random variable): How far from the expectation?

$$\Delta(W_1) = (W_1 - E[W_1])^2$$

$$\mathbb{P}(\Delta(W_1) = 1) = \frac{2}{3}$$

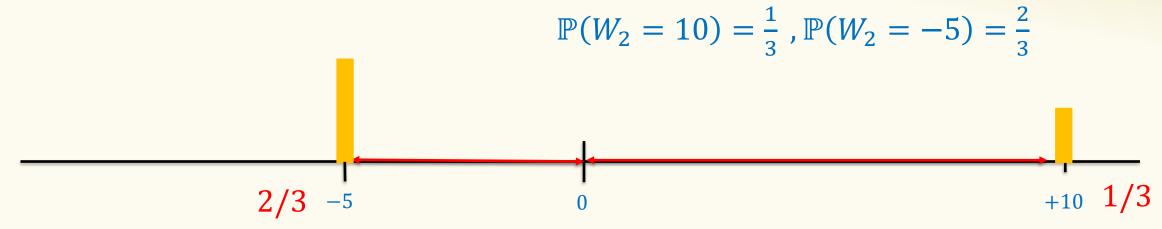
$$\mathbb{P}(\Delta(W_1) = 4) = \frac{1}{3}$$

$$E[\Delta(W_1)] = E[(W_1 - E[W_1])^2]$$

$$= \frac{2}{3} \cdot 1 + \frac{1}{3} \cdot 4$$

$$= 2$$

Variance (Intuition, Better Try)



A better quantity (random variable): How far from the expectation?

$$\Delta'(W_2) = (W_2 - E[W_2])^2$$

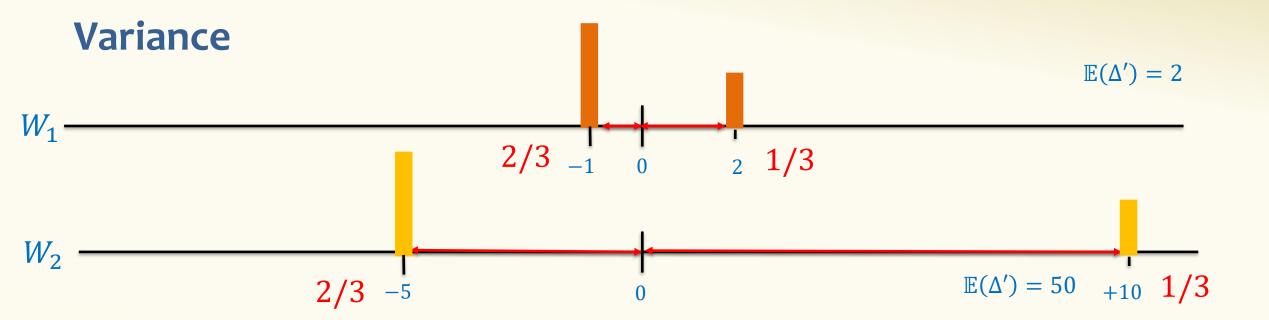
$$\mathbb{P}(\Delta'(W_2) = 25) = \frac{2}{3}$$

$$\mathbb{P}(\Delta'(W_2) = 100) = \frac{1}{3}$$

$$E[\Delta'(W_2)] = E[(W_2 - E[W_2])^2]$$

$$= \frac{2}{3} \cdot 25 + \frac{1}{3} \cdot 100$$

$$= 50$$



We say that W_2 has "higher variance" than W_1 .

Variance

Definition. The **variance** of a (discrete) RV *X* is

$$Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^{2}\right] = \sum_{x} \mathbb{p}_{X}(x) \cdot \left(x - \mathbb{E}(X)\right)^{2}$$

Recall $\mathbb{E}(X)$ is a **constant**, not a random variable itself.

Intuition: Variance is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance

Definition. The **variance** of a (discrete) RV *X* is

$$Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^{2}\right] = \sum_{x} \mathbb{p}_{X}(x) \cdot \left(x - \mathbb{E}(X)\right)^{2}$$

Standard deviation: $\sigma(X) = \sqrt{\text{Var}(X)}$

Recall $\mathbb{E}(X)$ is a **constant**, not a random variable itself.

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = 3.5$

$$Var(X) = ?$$

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = 3.5$

$$Var(X) = \sum_{x} \mathbb{P}(X = x) \cdot (x - \mathbb{E}(X))^{2}$$

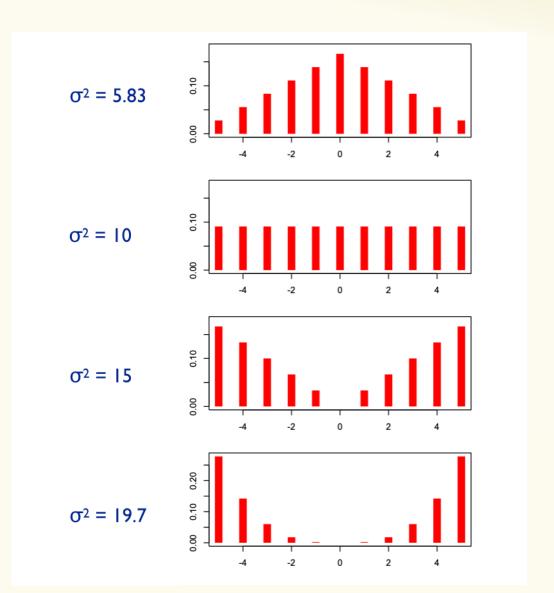
$$= \frac{1}{6}[(1-3.5)^2 + (2-3.5)^2 + (3-3.5)^2 + (4-3.5)^2 + (5-3.5)^2 + (6-3.5)^2]$$

$$= \frac{2}{6} [2.5^2 + 1.5^2 + 0.5^2] = \frac{2}{6} \left[\frac{25}{4} + \frac{9}{4} + \frac{1}{4} \right] = \frac{35}{12} \approx 2.91677 \dots$$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs in picture have same expectation



Agenda

- Linearity Recap
- LOTUS
- Variance
 - Properties of Variance
- Independent Random Variables
 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture

Variance – Properties

Definition. The **variance** of a (discrete) RV *X* is

$$Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^{2}\right] = \sum_{x} \mathbb{p}_{X}(x) \cdot \left(x - \mathbb{E}(X)\right)^{2}$$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

(Proof: Exercise!)

Theorem.
$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Variance

Theorem. $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Proof: Var(X) =
$$\mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]$$
= $\mathbb{E}[X^2 - 2\mathbb{E}(X) \cdot X + \mathbb{E}(X)^2]$
= $\mathbb{E}(X^2) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^2$
= $\mathbb{E}(X^2) - \mathbb{E}(X)^2$
(linearity of expectation!)
$$\mathbb{E}(X^2) \text{ and } \mathbb{E}(X)^2$$
are different!

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = \frac{21}{6}$
- $\mathbb{E}(X^2) = \frac{91}{6}$

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{105}{36} \approx 2.91677$$

In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Example to show this:

- Let *X* be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$
 - What is E[X] and Var(X)?

In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Example to show this:

- Let *X* be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - $\mathbb{E}[X] = 0$ and Var(X) = 1
- Let Y = -X
 - What is E[Y] and Var(Y)?

In General,
$$Var(X + Y) \neq Var(X) + Var(Y)$$

Example to show this:

- Let *X* be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - $\mathbb{E}[X] = 0$ and Var(X) = 1
- Let Y = -X-E[Y] = 0 and Var(Y) = 1

What is Var(X + Y)?

Agenda

- Linearity Recap
- LOTUS
- Variance
 - Properties of Variance
- Independent Random Variables
 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture

Random Variables and Independence

Definition. Two random variables X, Y are (mutually) independent if for all x, y,

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables $X_1, ..., X_n$ are (mutually) independent if for all $x_1, ..., x_n$,

$$\mathbb{P}(X_1 = x_1, ..., X_n = x_n) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n)$$

Example

Let X be the number of heads in n independent coin flips of the same coin with probability p of coming up Heads. Let $Y = X \mod 2$ be the parity (even/odd) of X.

Are X and Y independent?

Poll:

A. Yes

B. No

Example

Make 2n independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.

Are *X* and *Y* independent?

Poll:

A. Yes

B. No

Agenda

- Linearity Recap
- LOTUS
- Variance
 - Properties of Variance
- Independent Random Variables
 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Theorem. If X, Y independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent,

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

Independent Random Variables are nice!

Theorem. If X, Y independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Proof

Let $x_i, y_i, i = 1, 2, ...$ be the possible values of X, Y.

$$E[X \cdot Y] = \sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P(X = x_{i} \wedge Y = y_{j})$$

$$= \sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P(X = x_{i}) \cdot P(Y = y_{j})$$

$$= \sum_{i} x_{i} \cdot P(X = x_{i}) \cdot \left(\sum_{j} y_{j} \cdot P(Y = y_{j})\right)$$
$$= E[X] \cdot E[Y]$$

Note: NOT true in general; see earlier example $E[X^2] \neq E[X]^2$

Proof not covered

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

Theorem. If X, Y independent, Var(X + Y) = Var(X) + Var(Y)

Proof

$$Var[X + Y]$$

$$= E[(X + Y)^{2}] - (E[X + Y])^{2}$$

$$= E[X^{2} + 2XY + Y^{2}] - (E[X] + E[Y])^{2}$$

$$= E[X^{2}] + 2E[XY] + E[Y^{2}] - ((E[X])^{2} + 2E[X]E[Y] + (E[Y])^{2})$$

$$= E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2} + 2(E[XY] - E[X]E[Y])$$

$$= Var[X] + Var[Y] + 2(E[X]E[Y] - E[X]E[Y])$$

$$= Var[X] + Var[Y]$$

Proof not covered

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

-
$$X_i = \begin{cases} 1, & i \text{--th outcome is heads} \\ 0, & i \text{--th outcome is tails.} \end{cases}$$

- Z = number of heads

What is E[Z]? What is Var(Z)?

Note: X_1, \dots, X_n are mutually independent!

Fact.
$$Z = \sum_{i=1}^{n} X_i$$

$$\mathbb{P}(X_i = 1) = p$$

$$\mathbb{P}(X_i = 0) = 1 - p$$

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_i = \begin{cases} 1, & i\text{--th outcome is heads} \\ 0, & i\text{--th outcome is tails.} \end{cases}$
- Z = number of heads

What is E[Z]? What is Var(Z)?

Fact.
$$Z = \sum_{i=1}^{n} X_i$$

$$\mathbb{P}(X_i = 1) = p$$

$$\mathbb{P}(X_i = 0) = 1 - p$$

$$\mathbb{P}(Z=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Note: X_1, \dots, X_n are mutually independent!

$$Var(Z) = \sum_{i=1}^{n} Var(X_i) = n \cdot p(1-p)$$
 Note $Var(X_i) = p(1-p)$

Agenda

- Linearity Recap
- LOTUS
- Variance
 - Properties of Variance
- Independent Random Variables
 - Properties of Independent Random Variables
- Application: Bloom Filter
 - Read textbook, if time permits we'll go over it in lecture

Basic Problem

Problem: Store a subset S of a <u>large</u> set U.

```
Example. U = \text{set of } 128 \text{ bit strings} |U| \approx 2^{128} |S| \approx 1000
```

Two goals:

- 1. Very fast (ideally constant time) answers to queries "Is $x \in S$?"
- 2. Minimal storage requirements.

Bloom Filters: Motivation

- Large universe of possible data items.
- Hash table is stored on disk or in network, so any lookup is expensive.
- Many (if not most) of the lookups return "Not found".

Altogether, this is bad. You're wasting a lot of time and space doing lookups for items that aren't even present.

Example:

 Network routers: want to track source IP addresses of certain packets, .e.g., blocked IP addresses.

Bloom Filters: Motivation

- Probabilistic data structure.
- Close cousins of hash tables.
- Ridiculously space efficient
- To get that, make occasional errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements.
- Supports two operations:
 - 1. add(x) adds x to bloom filter
 - 2. contains(x) returns true if x in bloom filter, otherwise returns false
 - If returns false, definitely not in bloom filter.
 - If returns true, possibly in the structure (some false positives).

Bloom Filters

- Why accept false positives?
 - Speed both operations very very fast.
 - Space requires a miniscule amount of space relative to storing all the actual items that have been added.

Often just 8 bits per inserted item!

Bloom Filters: Initialization

Number of hash functions

Size of array associated to each hash function.

function initialize(k,m)

for i = 1, ..., k: **do**

 t_i = new bit vector of m 0's

for each hash function, initialize an empty bit vector of size m

bloom filter t with m = 5 that uses k = 3 hash functions

function INITIALIZE(k,m) for i = 1, ..., k: do $t_i = \text{new bit vector of m 0's}$

Index →	Θ	1	2	3	4
t ₁	Θ	0	0	0	0
t ₂	Θ	0	0	0	0
t ₃	Θ	0	0	Θ	0

Bloom Filters: Add

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

 for each hash function h_i

Index into ith bit-vector, at
index produced by hash function
and set to 1

h_i(x) → result of hash function h_i on x

bloom filter t with m = 5 that uses k = 3 hash functions

function ADD(X) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	Θ	1	2	3	4
t ₁	0	0	Θ	Θ	0
t ₂	Θ	0	Θ	Θ	0
t ₃	Θ	Θ	Θ	Θ	0

bloom filter t of length m = 5 that uses k = 3 hash functions add("thisisavirus.com")

function ADD(X)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

$$h_1$$
("thisisavirus.com") $\rightarrow 2$
 h_2 ("thisisavirus.com") $\rightarrow 1$

	dex >	Θ	1	2	3	4
t	1	0	Θ	1	Θ	Θ
t	2	0	Θ	Θ	Θ	Θ
t	3	0	0	0	0	0

bloom filter t of length m = 5 that uses k = 3 hash functions add("thisisavirus.com")

function ADD(X) **for** i = 1, ..., k: **do** $t_i[h_i(x)] = 1$

$$h_1$$
("thisisavirus.com") $\rightarrow 2$
 h_2 ("thisisavirus.com") $\rightarrow 1$
 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
t ₁	Θ	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	0

bloom filter t of length m = 5 that uses k = 3 hash
functions
 add("thisisavirus.com")

function ADD(X)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

$$h_1$$
("thisisavirus.com") $\rightarrow 2$
 h_2 ("thisisavirus.com") $\rightarrow 1$
 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
$t_{\scriptscriptstyle 1}$	0	0	1	0	0
t_2	0	1	Θ	0	0
t ₃	0	0	0	0	1

bloom filter t with m = 5 that uses k = 3 hash functions

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

contains("thisisavirus.com")

Index →	Θ	1	2	3	4
t ₁	Θ	0	1	Θ	0
t ₂	Θ	1	Θ	Θ	0
t ₃	Θ	0	Θ	Θ	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ h_1 ("thisisavirus.com") $\rightarrow 2$

True

Index →	Θ	1	2	3	4
t ₁	Θ	0	1	0	0
t ₂	Θ	1	Θ	Θ	0
t ₃	0	0	0	0	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ h_1 ("thisisavirus.com") $\rightarrow 2$ h_2 ("thisisavirus.com") $\rightarrow 1$

True True

Index →	0	1	2	3	4
t ₁	Θ	Θ	1	0	0
t ₂	Θ	1	0	0	0
t ₃	Θ	0	0	0	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

True

True

 h_1 ("thisisavirus.com") \rightarrow 2 h_2 ("thisisavirus.com") \rightarrow 1 h_3 ("thisisavirus.com") \rightarrow 4

Index →	Θ	1	2	3	4
t ₁	Θ	Θ	1	Θ	Θ
t ₂	Θ	1	0	0	Θ
t ₃	Θ	Θ	Θ	0	1

```
h_1 ("thisisavirus.com") \rightarrow 2
function CONTAINS(X)
                                                             h_2 ("thisisavirus.com") \rightarrow 1
    return t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1
                                                             h_3 ("thisisavirus.com") \rightarrow 4
            True
                         True
                                            True
                                        Index
   Since all conditions satisfied, returns True (correctly)
                                                       \Theta
                                                                             \Theta
                                                                                         \Theta
```

Bloom Filters: Contains

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$, otherwise returns False

bloom filter t of length m = 5 that uses k = 3 hash functions

add("totallynotsuspicious.com")

function ADD(x)
for
$$i = 1, ..., k$$
: do
$$t_i[h_i(x)] = 1$$

Index →	Θ	1	2	3	4
t ₁	Θ	Θ	1	Θ	Θ
t ₂	Θ	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash functions add("totallynotsuspicious.com")

function ADD(X)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

h₁("totallynotsuspicious.com") → 1

Index →	Θ	1	2	3	4
t ₁	Θ	0	1	Θ	Θ
t ₂	Θ	1	Θ	Θ	0
t ₃	Θ	0	Θ	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash functions add("totallynotsuspicious.com")

function ADD(X) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

h₁("totallynotsuspicious.com") → 1
h₂("totallynotsuspicious.com") → 0

Index →	Θ	1	2	3	4
t ₁	Θ	1	1	Θ	Θ
t ₂	Θ	1	Θ	Θ	Θ
t ₃	0	0	0	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash functions add("totallynotsuspicious.com")

function ADD(X)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

h₁("totallvnotsuspicious.com") → 1
h₂("totallvnotsuspicious.com") → 0
h₃("totallynotsuspicious.com") → 4

Index →	Θ	1	2	3	4
t ₁	Θ	1	1	Θ	0
t ₂	1	1	Θ	Θ	0
t ₃	0	0	0	0	1

bloom filter t of length m = 5 that uses k = 3 hash
functions add("totallynotsuspicious.com")

function ADD(X)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

h₁("totallynotsuspicious.com") → 1
h₂("totallynotsuspicious.com") → 0

h₃("totallynotsuspicious.com") → 4

Collision,
is already
set to 1

Index →	Θ	1	2	3	4
t ₁	Θ	1	1	0	Θ
t ₂	1	1	Θ	0	Θ
t ₃	0	Θ	Θ	0	1

bloom filter t of length m = 5 that uses k = 3 hash functions add("totallynotsuspicious.com")

function ADD(X)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

 h_1 ("totallynotsuspicious.com") \rightarrow 1 h_2 ("totallynotsuspicious.com") \rightarrow 0 h_3 ("totallynotsuspicious.com") \rightarrow 4

Index →	0	1	2	3	4
t ₁	0	1	1	Θ	0
t ₂	1	1	0	Θ	0
t ₃	0	0	0	Θ	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

Index →	Θ	1	2	3	4
t ₁	Θ	1	1	Θ	Θ
t ₂	1	1	Θ	Θ	Θ
t ₃	Θ	0	Θ	Θ	1

```
function CONTAINS(X)

return t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1
```

h₁("verynormalsite.com") → 2

True

Index →	Θ	1	2	3	4
t ₁	Θ	1	1	Θ	Θ
t ₂	1	1	Θ	0	0
t ₃	0	0	0	0	1


```
function CONTAINS(X)

return t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1
```

h₁("verynormalsite.com") → 2
h₂("verynormalsite.com") → 0

True True

Index →	Θ	1	2	3	4
t ₁	Θ	1	1	0	0
t ₂	1	1	Θ	0	0
t ₃	Θ	Θ	0	0	1


```
function CONTAINS(X)

return t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1
```

True

True

True

h₁("verynormalsite.com") → 2
h₂("verynormalsite.com") → 0
h₃("verynormalsite.com") → 4

Index →	Θ	1	2	3	4
t ₁	Θ	1	1	Θ	Θ
t ₂	1	1	0	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

```
function CONTAINS(X)
return t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1

True

True

True
```

h₁("verynormalsite.com") → 2
h₂("verynormalsite.com") → 0
h₃("verynormalsite.com") → 4

			Index	0	1	2	3	4
Since all conditions satisfied, returns True (incorrectly)								
			t ₁	0	1	1	0	0
			t ₂	1	1	0	0	0
			t ₃	0	0	0	0	1

Bloom Filters: Summary

- An empty bloom filter is an empty k x m bit array with all values initialized to zeros
 - k = number of hash functions
 - m = size of each array in the bloom filter
- add(x) runs in O(k) time
- contains(x) runs in O(k) time
- requires O(km) space (in bits!)
- Probability of false positives from collisions can be reduced by increasing the size of the bloom filter

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be space-efficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Bloom Filters: Many Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...

Bloom Filters

It's typical of randomized algorithms and randomized data structures to be...

- Simple
- Fast
- Efficient
- Elegant
- Useful!