CSE 312

Foundations of Computing II

Lecture 10: More on Discrete RVs

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au
incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & myself ☺
Agenda

• Linearity Recap
• LOTUS
• Variance
 – Properties of Variance
• Independent Random Variables
 – Properties of Independent Random Variables
• Application: Bloom Filter
 – Read textbook, if time permits we’ll go over it in lecture
Recap Linearity of Expectation

Theorem. For any two random variables X and Y (*X, Y do not need to be independent*)

$$\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y).$$

Theorem. For any random variables X_1, \ldots, X_n, and real numbers $a_1, \ldots, a_n \in \mathbb{R}$,

$$\mathbb{E}(a_1X_1 + \cdots + a_nX_n) = a_1\mathbb{E}(X_1) + \cdots + a_n\mathbb{E}(X_n).$$

For any event A, can define the indicator random variable X for A

$$X = \begin{cases} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{if event } A \text{ does not occur} \end{cases}$$

$$\mathbb{P}(X = 1) = \mathbb{P}(A) \quad \mathbb{P}(X = 0) = 1 - \mathbb{P}(A)$$
Rotating the table

n people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in front of their own name tag.

Rotate the table by a random number k of positions between 1 and n-1 (equally likely).

X is the number of people that end up front of their own name tag.

What is E(X)?

Decompose:

LOE:

Conquer:
Agenda

• Linearity Recap
• LOTUS
• Variance
 – Properties of Variance
• Independent Random Variables
 – Properties of Independent Random Variables
• Application: Bloom Filter
 – Read textbook, if time permits we’ll go over it in lecture
Linearity is special!

In general $\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$

E.g., $X = \begin{cases} 1 & \text{with prob } 1/2 \\ -1 & \text{with prob } 1/2 \end{cases}$

- $\mathbb{E}(X^2) \neq \mathbb{E}(X)^2$

How DO we compute $\mathbb{E}(g(X))$?
Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of the random variable $g(X)$ is

$$E[g(X)] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot \Pr(\omega)$$

or equivalently

$$E[g(X)] = \sum_{x \in X(\Omega)} g(x) \cdot \Pr(X = x)$$
Example: Expectation of $g(X)$

Suppose we rolled a fair, 6-sided die in a game. Your winnings will be the cube of the number rolled, times 10. Let X be the result of the dice roll. What is your expected winnings?

$$E[10X^3] =$$
Agenda

• Linearity Recap
• LOTUS
• Variance
 – Properties of Variance
• Independent Random Variables
 – Properties of Independent Random Variables
• Application: Bloom Filter
 – Read textbook, if time permits we’ll go over it in lecture
Two Games

Game 1: In every round, you win $2 with probability 1/3, lose $1 with probability 2/3.

$W_1 =$ payoff in a round of Game 1

$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$
Two Games

Game 1: In every round, you win $2 with probability $\frac{1}{3}$, lose 1 with probability $\frac{2}{3}$.

W_1 = payoff in a round of Game 1

$\mathbb{P}(W_1 = 2) = \frac{1}{3}$, $\mathbb{P}(W_1 = -1) = \frac{2}{3}$

Game 2: In every round, you win 10 with probability $\frac{1}{3}$, lose 5 with probability $\frac{2}{3}$.

W_2 = payoff in a round of Game 2

$\mathbb{P}(W_2 = 10) = \frac{1}{3}$, $\mathbb{P}(W_2 = -5) = \frac{2}{3}$

Which game would you rather play?
Two Games

Game 1: In every round, you win $2 with probability $1/3$, lose 1 with probability $2/3$.

$W_1 = $ payoff in a round of Game 1

$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$

$\mathbb{E}(W_1) = 0$

Game 2: In every round, you win 10 with probability $1/3$, lose 5 with probability $2/3$.

$W_2 = $ payoff in a round of Game 2

$\mathbb{P}(W_2 = 10) = \frac{1}{3}, \mathbb{P}(W_2 = -5) = \frac{2}{3}$

$\mathbb{E}(W_2) = 0$

Which game would you rather play? Somehow, Game 2 has higher volatility!
Two Games

\[P(W_1 = 2) = \frac{1}{3}, \quad P(W_1 = -1) = \frac{2}{3} \]

\[P(W_2 = 10) = \frac{1}{3}, \quad P(W_2 = -5) = \frac{2}{3} \]

Same expectation, but clearly very different distribution.

We want to capture the difference – New concept: Variance
Variance (Intuition, First Try)

\[\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3} \]

\[\mathbb{E}(W_1) = 0 \]

New quantity (random variable): How far from the expectation?

\[\Delta(W_1) = W_1 - E[W_1] \]
Variance (Intuition, First Try)

\(\mathbb{P}(W_1 = 2) = \frac{1}{3} , \mathbb{P}(W_1 = -1) = \frac{2}{3} \)

New quantity (random variable): How far from the expectation?

\(\Delta(W_1) = W_1 - E[W_1] \)

\[
E[\Delta(W_1)] = E[W_1 - E[W_1]]
\]
\[
= E[W_1] - E[E[W_1]]
\]
\[
= E[W_1] - E[W_1]
\]
\[
= 0
\]

\(\mathbb{E}(W_1) = 0 \)
Variance (Intuition, Better Try)

\[P(W_1 = 2) = \frac{1}{3}, \quad P(W_1 = -1) = \frac{2}{3} \]

\[\mathbb{E}(W_1) = 0 \]

A better quantity (random variable): How far from the expectation?

\[\Delta(W_1) = (W_1 - E[W_1])^2 \]

\[E[\Delta(W_1)] = E[(W_1 - E[W_1])^2] \]
Variance (Intuition, Better Try)

\[\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3} \]

A better quantity (random variable): How far from the expectation?

\[\Delta(W_1) = (W_1 - E[W_1])^2 \]

\[\mathbb{P}(\Delta(W_1) = 1) = \frac{2}{3} \]

\[\mathbb{P}(\Delta(W_1) = 4) = \frac{1}{3} \]

\[E[\Delta(W_1)] = E[(W_1 - E[W_1])^2] \]

\[= \frac{2}{3} \cdot 1 + \frac{1}{3} \cdot 4 \]

\[= 2 \]
A better quantity (random variable): How far from the expectation?

\[\Delta'(W_2) = (W_2 - E[W_2])^2 \]

\[\mathbb{P}(\Delta'(W_2) = 25) = \frac{2}{3} \]

\[\mathbb{P}(\Delta'(W_2) = 100) = \frac{1}{3} \]

\[E[\Delta'(W_2)] = E[(W_2 - E[W_2])^2] = \frac{2}{3} \cdot 25 + \frac{1}{3} \cdot 100 = 50 \]
We say that W_2 has "higher variance" than W_1.
Definition. The variance of a (discrete) RV X is

$$\text{Var}(X) = \mathbb{E} \left[(X - \mathbb{E}(X))^2 \right] = \sum_x p_X(x) \cdot (x - \mathbb{E}(X))^2$$

Recall $\mathbb{E}(X)$ is a constant, not a random variable itself.

Intuition: Variance is a quantity that measures, in expectation, how “far” the random variable is from its expectation.
Variance

Definition. The *variance* of a (discrete) RV X is

\[
\text{Var}(X) = \mathbb{E} \left[(X - \mathbb{E}(X))^2 \right] = \sum_x p_X(x) \cdot (x - \mathbb{E}(X))^2
\]

Standard deviation: $\sigma(X) = \sqrt{\text{Var}(X)}$

Recall $\mathbb{E}(X)$ is a **constant**, not a random variable itself.

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how “far” the random variable is from its expectation.
Variance – Example 1

\(X \) fair die

- \(\mathbb{P}(X = 1) = \cdots = \mathbb{P}(X = 6) = 1/6 \)
- \(\mathbb{E}(X) = 3.5 \)

\(\text{Var}(X) = ? \)
Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \cdots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = 3.5$

$\text{Var}(X) = \sum_x \mathbb{P}(X = x) \cdot (x - \mathbb{E}(X))^2$

$$= \frac{1}{6} \left[(1 - 3.5)^2 + (2 - 3.5)^2 + (3 - 3.5)^2 + (4 - 3.5)^2 + (5 - 3.5)^2 + (6 - 3.5)^2 \right]$$

$$= \frac{2}{6} \left[2.5^2 + 1.5^2 + 0.5^2 \right] = \frac{2}{6} \left[\frac{25}{4} + \frac{9}{4} + \frac{1}{4} \right] = \frac{35}{12} \approx 2.91677 \ldots$$
Variance in Pictures

Captures how much “spread’’ there is in a pmf

All pmfs in picture have same expectation

σ² = 5.83
σ² = 10
σ² = 15
σ² = 19.7
Agenda

• Linearity Recap
• LOTUS
• Variance
 – Properties of Variance
• Independent Random Variables
 – Properties of Independent Random Variables
• Application: Bloom Filter
 – Read textbook, if time permits we’ll go over it in lecture
Variance – Properties

Definition. The variance of a (discrete) RV X is

$$\text{Var}(X) = \mathbb{E} \left[(X - \mathbb{E}(X))^2 \right] = \sum_x p_x(x) \cdot (x - \mathbb{E}(X))^2$$

Theorem. For any $a, b \in \mathbb{R}$, $\text{Var}(a \cdot X + b) = a^2 \cdot \text{Var}(X)$

(Proof: Exercise!)

Theorem. $\text{Var}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$
Theorem. \(\text{Var}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 \)

Proof: \(\text{Var}(X) = \mathbb{E} \left[(X - \mathbb{E}(X))^2 \right] \)

\[
= \mathbb{E}[X^2 - 2\mathbb{E}(X) \cdot X + \mathbb{E}(X)^2]
\]

\[
= \mathbb{E}(X^2) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^2
\]

\[
= \mathbb{E}(X^2) - \mathbb{E}(X)^2
\]

(linearity of expectation!)

Recall \(\mathbb{E}(X) \) is a constant

\(\mathbb{E}(X^2) \) and \(\mathbb{E}(X)^2 \) are different!
Variance – Example 1

\(X \) fair die

- \(\mathbb{P}(X = 1) = \cdots = \mathbb{P}(X = 6) = 1/6 \)
- \(\mathbb{E}(X) = \frac{21}{6} \)
- \(\mathbb{E}(X^2) = \frac{91}{6} \)

\[
\text{Var}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{91}{6} - \left(\frac{21}{6} \right)^2 = \frac{105}{36} \approx 2.91677
\]
In General, \(\text{Var}(X + Y) \neq \text{Var}(X) + \text{Var}(Y) \)

Example to show this:

• Let \(X \) be a r.v. with pmf \(\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2 \)
 – What is \(E[X] \) and \(\text{Var}(X) \)?
In General, $\text{Var}(X + Y) \neq \text{Var}(X) + \text{Var}(Y)$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$
 - $E[X] = 0$ and $\text{Var}(X) = 1$

- Let $Y = -X$
 - What is $E[Y]$ and $\text{Var}(Y)$?
In General, \(\text{Var}(X + Y) \neq \text{Var}(X) + \text{Var}(Y) \)

Example to show this:

- Let \(X \) be a r.v. with pmf \(\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2 \)
 - \(\mathbb{E}[X] = 0 \) and \(\text{Var}(X) = 1 \)
- Let \(Y = -X \)
 - \(\mathbb{E}[Y] = 0 \) and \(\text{Var}(Y) = 1 \)

What is \(\text{Var}(X + Y) \)?
Agenda

• Linearity Recap
• LOTUS
• Variance
 – Properties of Variance
• Independent Random Variables
 – Properties of Independent Random Variables
• Application: Bloom Filter
 – Read textbook, if time permits we’ll go over it in lecture
Definition. Two random variables X, Y are *(mutually) independent* if for all x, y,

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$$

Intuition: Knowing X doesn’t help you guess Y and vice versa.

Definition. The random variables $X_1, ..., X_n$ are *(mutually) independent* if for all $x_1, ..., x_n$,

$$\mathbb{P}(X_1 = x_1, ..., X_n = x_n) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n)$$
Example

Let X be the number of heads in n independent coin flips of the same coin with probability p of coming up Heads. Let $Y = X \mod 2$ be the parity (even/odd) of X.
Are X and Y independent?

Poll:

A. Yes
B. No
Example

Make \(2n\) independent coin flips of the same coin. Let \(X\) be the number of heads in the first \(n\) flips and \(Y\) be the number of heads in the last \(n\) flips. Are \(X\) and \(Y\) independent?

Poll:

A. Yes
B. No
Agenda

• Linearity Recap
• LOTUS
• Variance
 – Properties of Variance
• Independent Random Variables
 – Properties of Independent Random Variables
• Application: Bloom Filter
 – Read textbook, if time permits we’ll go over it in lecture
Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Theorem. If X, Y independent, $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$

Corollary. If X_1, X_2, \ldots, X_n mutually independent,

$$\text{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i} \text{Var}(X_i)$$
Independent Random Variables are nice!

Theorem. If X, Y independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Proof

Let $x_i, y_i, i = 1, 2, \ldots$ be the possible values of X, Y.

\[
E[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j)
\]

\[
= \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i) \cdot P(Y = y_j)
\]

\[
= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j) \right)
\]

\[
= E[X] \cdot E[Y]
\]

Note: NOT true in general; see earlier example $E[X^2] \neq E[X]^2$.
Proof of $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$

Theorem. If X, Y independent, $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$

Proof

\[
\text{Var}[X + Y] \\
= E[(X + Y)^2] - (E[X + Y])^2 \\
= E[X^2 + 2XY + Y^2] - (E[X] + E[Y])^2 \\
= E[X^2] - (E[X])^2 + E[Y^2] - (E[Y])^2 + 2(E[XY] - E[X]E[Y]) \\
= \text{Var}[X] + \text{Var}[Y] + 2(E[X]E[Y] - E[X]E[Y]) \\
= \text{Var}[X] + \text{Var}[Y]
\]
Example – Coin Tosses

We flip \(n \) independent coins, each one heads with probability \(p \)

- \(X_i = \begin{cases} 1, & \text{i-th outcome is heads} \\ 0, & \text{i-th outcome is tails.} \end{cases} \)

- \(Z = \) number of heads

What is \(E[Z] \)? What is \(\text{Var}(Z) \)?

Note: \(X_1, \ldots, X_n \) are mutually independent!
Example – Coin Tosses

We flip \(n \) independent coins, each one heads with probability \(p \)

- \(X_i = \begin{cases} 1, & \text{\(i \)-th outcome is heads} \\ 0, & \text{\(i \)-th outcome is tails.} \end{cases} \)

- \(Z = \) number of heads

What is \(E[Z] \)? What is \(\text{Var}(Z) \)?

Fact. \(Z = \sum_{i=1}^{n} X_i \)

\[
\mathbb{P}(X_i = 1) = p \\
\mathbb{P}(X_i = 0) = 1 - p
\]

\[
\mathbb{P}(Z = k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]

Note: \(X_1, \ldots, X_n \) are mutually independent!

\[
\text{Var}(Z) = \sum_{i=1}^{n} \text{Var}(X_i) = n \cdot p(1 - p)
\]

Note \(\text{Var}(X_i) = p(1 - p) \)
Agenda

• Linearity Recap
• LOTUS
• Variance
 – Properties of Variance
• Independent Random Variables
 – Properties of Independent Random Random Variables
• Application: Bloom Filter
 – Read textbook, if time permits we’ll go over it in lecture
Basic Problem

Problem: Store a subset S of a large set U.

Example. $U =$ set of 128 bit strings
$S =$ subset of strings of interest

\[|U| \approx 2^{128} \]
\[|S| \approx 1000 \]

Two goals:
1. **Very fast** (ideally constant time) answers to queries “Is $x \in S$?”
2. **Minimal storage** requirements.
Bloom Filters: Motivation

- Large universe of possible data items.
- Hash table is stored on disk or in network, so any lookup is expensive.
- Many (if not most) of the lookups return “Not found”.

Altogether, this is bad. You’re wasting a lot of time and space doing lookups for items that aren’t even present.

Example:

- **Network routers:** want to track source IP addresses of certain packets, e.g., blocked IP addresses.
Bloom Filters: Motivation

- Probabilistic data structure.
- Close cousins of hash tables.
- Ridiculously space efficient
- To get that, make occasional errors, specifically false positives.
Bloom Filters

- Stores information about a set of elements.
- Supports two operations:
 1. **add**(x) - adds x to bloom filter
 2. **contains**(x) - returns true if x in bloom filter, otherwise returns false
 - If returns false, **definitely** not in bloom filter.
 - If returns true, **possibly** in the structure (some false positives).
Bloom Filters

• Why accept false positives?
 – **Speed** – both operations very very fast.
 – **Space** – requires a miniscule amount of space relative to storing all the actual items that have been added.

○ Often just 8 bits per inserted item!
Bloom Filters: Initialization

function INITIALIZE(k,m)

for $i = 1, \ldots, k$: do

t_i = new bit vector of m 0's

Number of hash functions

Size of array associated to each hash function.

for each hash function, initialize an empty bit vector of size m
Bloom Filters: Example

bloom filter \(t \) with \(m = 5 \) that uses \(k = 3 \) hash functions

```
function INITIALIZE(k,m)
    for \( i = 1, \ldots, k \): do
        \( t_i \) = new bit vector of \( m \) 0's
```

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Add

function ADD(x)

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

for each hash function h_i

Index into ith bit-vector, at index produced by hash function and set to 1

$h_i(x) \rightarrow$ result of hash function h_i on x
Bloom Filters: Example

A bloom filter \(t \) with \(m = 5 \) that uses \(k = 3 \) hash functions

Function \(\text{ADD}(x) \)

\[
\text{for } i = 1, \ldots, k: \text{ do} \\
\quad t_i[h_i(x)] = 1
\]

Example

\(\text{add("thisisavirus.com")} \)

\(h_1("thisisavirus.com") \rightarrow 2 \)

<table>
<thead>
<tr>
<th>Index (\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

function \(\text{ADD}(x) \)

for \(i = 1, \ldots, k \): do

\(t_i[h_i(x)] = 1 \)

add(“thisisaviruses.com”)

\(h_1(“thisisaviruses.com”) \rightarrow 2 \)

\(h_2(“thisisaviruses.com”) \rightarrow 1 \)

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

```
function ADD(x)
    for \( i = 1, \ldots, k \): do
        \( t_i[h_i(x)] = 1 \)
```

add("thisisavirus.com")

\(h_1(\text{"thisisavirus.com"}) \rightarrow 2 \)
\(h_2(\text{"thisisavirus.com"}) \rightarrow 1 \)
\(h_3(\text{"thisisavirus.com"}) \rightarrow 4 \)

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{ADD}(x)$

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

add(“thisisavirus.com”)

$h_1(“thisisavirus.com”) \rightarrow 2$

$h_2(“thisisavirus.com”) \rightarrow 1$

$h_3(“thisisavirus.com”) \rightarrow 4$

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

bloom filter \(t \) with \(m = 5 \) that uses \(k = 3 \) hash functions

function `contains(x)`
 return \(t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1 \)

contains(“thisisavirus.com”)

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

A bloom filter t of length $m = 5$ that uses $k = 3$ hash functions contains ("thisisavirus.com")

function $\text{CONTAINS}(x)$
return $t_1[h_1(x)] \land t_2[h_2(x)] \land \cdots \land t_k[h_k(x)] = 1$

True

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

bloom filter t of length $m = 5$ that uses $k = 3$ hash functions contains(“thisisavirus.com”) $h_1(“thisisavirus.com”) \rightarrow 2$

$h_2(“thisisavirus.com”) \rightarrow 1$

function $\text{Contains}(x)$

return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1$

True \hspace{1cm} True

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

bloom filter t of length $m = 5$ that uses $k = 3$ hash functions contains(“thisisavirus.com”)

```
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

A bloom filter t of length $m = 5$ that uses $k = 3$ hash functions to check if a domain "thisisavirus.com" is a virus.

Example

- $h_1(\text{"thisisavirus.com"}) \rightarrow 2$
- $h_2(\text{"thisisavirus.com"}) \rightarrow 1$
- $h_3(\text{"thisisavirus.com"}) \rightarrow 4$

Function `contains` Implementation

```python
def contains(x):
    return \( t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1 \)
```

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Since all conditions satisfied, returns True (correctly)
Bloom Filters: Contains

function `CONTAINS(x)`

```
return \( t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1 \)
```

Returns True if the bit vector \(t_i \) for each hash function has bit 1 at index determined by \(h_i(x) \), otherwise returns False.
Bloom Filters: False Positives

bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

\[
\text{function } \text{ADD}(x) \\
\text{for } i = 1, \ldots, k \text{ do} \\
\quad t_i[h_i(x)] = 1
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Index} & 0 & 1 & 2 & 3 & 4 \\
\hline
\hline
\text{t}_1 & 0 & 0 & 1 & 0 & 0 \\
\hline
\text{t}_2 & 0 & 1 & 0 & 0 & 0 \\
\hline
\text{t}_3 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}
\]

add(“totallynotsuspicious.com”)
Bloom Filters: False Positives

A Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

Function \(\text{ADD}(x) \)

\[
\text{for } i = 1, \ldots, k: \text{ do} \\
\quad t_i[h_i(x)] = 1
\]

Add(“totallynotsuspicious.com”)

\[
h_1(“totallynotsuspicious.com”) \rightarrow 1
\]

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

function \(\text{ADD}(x) \)

\[
\text{for } i = 1, \ldots, k: \text{ do} \\
\quad t_i[h_i(x)] = 1
\]

\(\text{add(“totallynotsuspicious.com”)} \)

\(h_1(“totallynotsuspicious.com”) \rightarrow 1 \)

\(h_2(“totallynotsuspicious.com”) \rightarrow 0 \)

<table>
<thead>
<tr>
<th>Index</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>(0)</td>
<td>(1)</td>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>(t_2)</td>
<td>(0)</td>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>(t_3)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(1)</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function ADD(x)
  for $i = 1, \ldots, k$: do
    $t_i[h_i(x)] = 1$
```

add(“totallynotsuspicious.com”)
$h_1(“totallynotsuspicious.com”) \rightarrow 1$
$h_2(“totallynotsuspicious.com”) \rightarrow 0$
$h_3(“totallynotsuspicious.com”) \rightarrow 4$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

A bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions:

\[
\text{\textbf{function ADD}}(x) \\
\text{for } i = 1, \ldots, k: \text{ do} \\
t_i[h_i(x)] = 1
\]

Example:

\[
\begin{align*}
\text{add(“totallynotsuspicious.com”) } & \text{ } \\
h_1(“totallynotsuspicious.com”) & \rightarrow 1 \\
h_2(“totallynotsuspicious.com”) & \rightarrow 0 \\
h_3(“totallynotsuspicious.com”) & \rightarrow 4
\end{align*}
\]

<table>
<thead>
<tr>
<th>Index (\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Collision, is already set to 1.
Bloom Filters: False Positives

A Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

Function `ADD(x)`

- for \(i = 1, \ldots, k \): do
 - \(t_i[h_i(x)] = 1 \)

Example:

- `ADD("totallynotsuspicious.com")`
 - \(h_1("totallynotsuspicious.com") \rightarrow 1 \)
 - \(h_2("totallynotsuspicious.com") \rightarrow 0 \)
 - \(h_3("totallynotsuspicious.com") \rightarrow 4 \)

<table>
<thead>
<tr>
<th>Index (\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

bloom filter t of length $m = 5$ that uses $k = 3$ hash functions contains(“very normalsite.com”)

function

$\text{CONTAINS}(x)$

$\text{return } t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

contains("verynormalsite.com")

\[h_1("verynormalsite.com") \rightarrow 2 \]

True

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

function contains(x)

return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1$
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions contains(“verynormalsite.com”)

\[
\begin{align*}
h_1(“verynormalsite.com”) &\rightarrow 2 \\
h_2(“verynormalsite.com”) &\rightarrow 0
\end{align*}
\]

```python
function CONTAINS(x):
    return \( t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1 \)
```

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

function \(\text{CONTAINS}(x) \)
return \(t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1 \)

\[
\begin{array}{c|c|c|c|c|c}
\text{Index} & 0 & 1 & 2 & 3 & 4 \\
\hline
\text{t}_1 & 0 & 1 & \textcolor{red}{1} & 0 & 0 \\
\text{t}_2 & 1 & 1 & 0 & 0 & 0 \\
\text{t}_3 & 0 & 0 & 0 & 0 & \textcolor{red}{1} \\
\end{array}
\]

\(h_1(\text{"verynormalsite.com"}) \rightarrow 2 \)
\(h_2(\text{"verynormalsite.com"}) \rightarrow 0 \)
\(h_3(\text{"verynormalsite.com"}) \rightarrow 4 \)
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

\[
\text{function } \text{CONTAINS}(x) \\
\text{return } t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1
\]

\[
\begin{align*}
\text{h}_1(\text{"verynormalsite.com"}) & \rightarrow 2 \\
\text{h}_2(\text{"verynormalsite.com"}) & \rightarrow 0 \\
\text{h}_3(\text{"verynormalsite.com"}) & \rightarrow 4
\end{align*}
\]

Since all conditions satisfied, returns True (incorrectly)
Bloom Filters: Summary

- An empty bloom filter is an empty $k \times m$ bit array with all values initialized to zeros
 - $k =$ number of hash functions
 - $m =$ size of each array in the bloom filter
- $\text{add}(x)$ runs in $O(k)$ time
- $\text{contains}(x)$ runs in $O(k)$ time
- Requires $O(km)$ space (in bits!)
- Probability of false positives from collisions can be reduced by increasing the size of the bloom filter
Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be space-efficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don’t need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.
Bloom Filters: Many Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...
Bloom Filters

It’s typical of randomized algorithms and randomized data structures to be...

- Simple
- Fast
- Efficient
- Elegant
- Useful!