CSE 312 Foundations of Computing II

Lecture 9: Linearity of Expectation, LOTUS, and Variance

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Agenda

- Linearity of Expectation
- Indicator Random Variables
- LOTUS
- Variance

Coin flipping again $k \leq 2$ $k \leq 2$ $h \in T$ $f = p \cdot p \cdot (-p) \cdot$

Suppose we flip a coin independently \hat{D} times with probability \hat{D} of coming up Heads each time. Let the r.v. \boldsymbol{Z} be the number of Heads in the n coin flips. What is the p.m.f. of \boldsymbol{Z} ?

$$\begin{cases} k=0 \\ u=1 \\ \dots \end{cases} \quad \left| \mathbb{P}(2=k) = \binom{n}{k} + \binom{n-k}{k-1} \right| \\ \frac{p}{(1-p)} \end{cases}$$

P(Z=h) =

Expectation of Random Variable

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the $\mathbb{E}(Z)$?

$$E[z]: \sum_{h=0}^{n} h({}^{n}_{h}) p^{h}(1-p)^{n-h}$$

The brute force method

we flip *n* coins, each one heads with probability *p*, *Z* is the number of heads, what is $\mathbb{E}(Z)$?

$$\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^{k} (1-p)^{n-k}$$
$$= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^{k} (1-p)^{n-k}$$

0=2 p=0.5 p=1

This Photo by Unknown Author is licensed under CC BY-NC

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$$

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} = np \left(p + (1-p)\right)^{n-1} = np \cdot 1 (np)^{n-1}$$

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch X fish, with E[X] = 3.
- Every day your friend catches Y fish, with E[Y] = 7.

How many fish do the two of you bring in (Z = X + Y) on an average day?

E[z] = E[X - 4] = ... = E[X] + E[Y] = 3 + 7 = 10

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch X fish, with E[X] = 3.
- Every day your friend catches Y fish, with E[Y] = 7.

How many fish do the two of you bring in (**Z** = **X** + **Y**) on an average day?

E[Z] = E[X + Y] = E[X] + E[Y] = 3 + 7 = 10

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch X fish, with E[X] = 3.
- Every day your friend catches Y fish, with E[Y] = 7.

How many fish do the two of you bring in (**Z** = **X** + **Y**) on an average day?

E[Z] = E[X + Y] = E[X] + E[Y] = 3 + 7 = 10

You can sell each fish for \$5 at a store, but you need to pay \$20 in rent. How much profit do you expect to make?

$$E[5Z - 20] = 5E[Z] - 20 = 5 \times 10 - 20 = 30$$

Linearity of Expectation – Proof

Theorem. For **any** two random variables *X* and *Y*

 $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y).$

$$E(X + Y) = \sum_{\omega} P(\omega)(X(\omega) + Y(\omega))$$

= $\sum_{\omega} P(\omega)X(\omega) + \sum_{\omega} P(\omega)Y(\omega)$
= $E(X) + E(Y)$

Linearity of Expectation

Theorem. For any two random variables X and Y

 $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y).$

Or, more generally: For any random variables X_1, \ldots, X_n ,

$$\mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n).$$

Because: $\mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}((X_1 + \dots + X_{n-1}) + X_n)$ = $\mathbb{E}(X_1 + \dots + X_{n-1}) + \mathbb{E}(X_n) = \dots$

Coin flipping again r = 5 $Z_{i} = \# of heads = i^{m} coin flipping$

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the $\mathbb{E}(Z)$?

$$Z = Z_{1} + Z_{2} + \dots + Z_{n} \quad \mathcal{E}[Z] = \mathcal{E}[Z_{1} + Z_{n}]$$

$$= \mathcal{E}[Z_{i}] + \mathcal{E}[Z_{i}] + \mathcal{E}[Z_{n}] + \dots + \mathcal{E}[Z_{n}]$$

$$= \mathcal{E}[Z_{i}] = \mathcal{I} \cdot P + 0 \cdot (\mathbb{I} - P) = P \qquad p + P + \dots P = P$$

$$= 2$$

$$Z_{3} = 1 \qquad P(Z_{i} = h) = \begin{cases} P \quad h = 1 \\ (\mathbb{I} - P \quad h = 0) \end{cases} \qquad p = P$$

$$Z_{i} = 0$$

$$Z_{i} = 0$$

$$Z_{i} = 0$$

$$Z_{i} = 0$$

Example – Coin Tosses

we flip *n* coins, each one heads with probability *p Z* is the number of heads, what is $\mathbb{E}(Z)$?

- $X_i = \begin{cases} 1, \ i-\text{th coin-flip is heads} \\ 0, \ i-\text{th coin-flip is tails.} \end{cases}$

Fact.
$$Z = X_1 + \dots + X_n$$

Linearity of Expectation: $\mathbb{E}(Z) = \mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n) = \underbrace{n \cdot p}$

 $\mathbb{P}(X_i = 1) = p$ $\mathbb{P}(X_i = 0) = 1 - p$

$$\mathbb{E}(X_i) = p \cdot 1 + (1-p) \cdot 0 = p$$

Computing complicated expectations

Often boils down to the following three steps

- <u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables $Z : \mathcal{T} : \mathcal{T} : \mathcal{T}_{\rho}$ $X = X_1 + \dots + X_n$
- LOE: Observe linearity of expectation.

 $\mathbb{E}(X) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n).$

• <u>Conquer</u>: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

Agenda

- Linearity of Expectation
- Indicator Random Variables 🗨
- LOTUS
- Variance

Indicator random variable

For any event A, can define the indicator random variable X for A

$$X = \begin{cases} \textbf{i} & \text{if event A occurs} \\ 0 & \text{if event A does not occur} \end{cases}$$

$$\mathbb{P}(X = 1) = \mathbb{P}(A)$$
$$\mathbb{P}(X = 0) = 1 - \mathbb{P}(A)$$

$$E[X] = \mathbb{P}(A) \times 1 + (1 - \mathbb{P}(A)) \cdot 0 = \mathbb{P}(A)$$

$$Z_i = \int i \int tre it conflop is head, O otherwornE[7;] = TP() = TP$$

- Class with n students, randomly hand back homeworks. All permutations equally likely. $X_i = \int_{V} \frac{1}{V} \frac{1}{V} \frac{1}{V} \frac{1}{V} \frac{1}{V} \frac{1}{V}$ • Let *X* be the number of students who get their own HW

• what is $\mathbb{E}(X)$? 1:3 E(X)=1

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

$Deconvolution : X = X_1 + X_2 + \dots + X_n$
(OF: E(X]: E[X, 1, X,] = E[X,]1 E[X,]
$C_{mqm}: E[X_i] = P(X_i = 1) = \frac{1}{0}$
E(X)= 1. n= 11 (
$\frac{E}{2} \left[\left(\frac{n-1}{2} \right)^{\prime} \right]_{n} = \frac{1}{2}$

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW
- what is $\mathbb{E}(X)$?
- Use Linearity of Expectation

Decompose: What is *X_i*?

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW
- what is $\mathbb{E}(X)$?

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Decompose: X_i indicates if student i got their own HW back LOE:

<u>Conquer</u>: What is $\mathbb{E}(X_i)$?

A.
$$\frac{1}{n}$$
 B. $\frac{1}{n-1}$ C. $\frac{1}{2}$

Pairs with same birthday (A,B) = (B,K) - (M-1)

• In a class of m students, on average how many pairs of people have the same birthday? $\chi_i = 1$ $\chi_i = 1$ χ_i pair shares a barry

Decompose: $X = X_1 + \dots + X_n$ n = # of poins $= \binom{m}{2}$ LOE: $E(X) = E[X_1] + \dots + E[X_n]$ $E(X) = E[X_i] + \dots + E[X_n]$ Conquer: $E(X_i] = TP(X_i = 1) = \binom{m}{365}$ $= \boxed{\binom{m}{2}}$ $= \boxed{\binom{m}{2}}$

Linearity of Expectation – Even stronger

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n \in \mathbb{R}$, $\mathbb{E}(a_1X_1 + \dots + a_nX_n) = a_1\mathbb{E}(X_1) + \dots + a_n\mathbb{E}(X_n)$. $\mathbb{E}[a \times] = a\mathbb{E}[\times] = \mathbb{E}[\times] = \mathbb$

Very important: In general, we do <u>not</u> have $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Agenda

- Linearity of Expectation
- Indicator Random Variables
- LOTUS Variance

Linearity is special!

In general
$$\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$$

E.g., $X = \begin{cases} 1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$

 $\mathbb{E}(X^2) \neq \mathbb{E}(X)^2$

How DO we compute $\mathbb{E}(g(X))$?

Expectation of g(X)

Definition. Given a discrete $\mathbb{RV} X: \Omega \to \mathbb{R}$, the expectation or expected value of g(X) is

$$\mathbf{E}[\mathbf{g}(X)] = \sum_{\omega \in \Omega} \mathbf{g}(X(\omega)) \cdot \mathbf{Pr}(\omega)$$

or equivalently

$$E[g(X)] = \sum_{x \in X(\Omega)} g(x) \cdot Pr(X = x)$$

- Class with <u>3</u> students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW
- Let $Y = (X^2 + 4) \mod 8$.
- what is $\mathbb{E}(Y)$?

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Rotating the table

- n people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in front of their own name tag.
- Rotate the table by a random number k of positions between 1 and n-1 (equally likely).
- X is the number of people that end up front of their own name tag.

What is E(X)?

Decompose:

LOE:

Conquer:

Take Home FUN Example – Coupon Collector Problem

Say each round we get a random coupon $X_i \in \{1, ..., n\}$, how many rounds (in expectation) until we have one of each coupon?

Formally: Outcomes in Ω are sequences of integers in $\{1, \dots, n\}$ where each integer appears at least once (+ cannot be shortened).

Example,
$$n = 3$$
:
 $\Omega = \{(1,2,3), (1,1,2,3), (1,2,2,3), (1,2,3), (1,1,1,3,3,3,3,3,3,2), \dots\}$
 $\mathbb{P}((1,2,3)) = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdots \mathbb{P}((1,1,2,2,2,3)) = \left(\frac{1}{3}\right)^6 \cdots$

Say each round we get a random coupon $X_i \in \{1, ..., n\}$, how many rounds (in expectation) until we have one of each coupon?

 $T_i = #$ of rounds until we have accumulated *i* distinct coupons [Aka: length of the sampled ω]

Wanted: $\mathbb{E}(T_n)$

Hard to think about T_n directly, Can we decompose T_n as a sum of simpler random variables?

 $Z_i = T_i - T_{i-1}$

of rounds needed to go from i - 1 to i coupons

 $T_i = #$ of rounds until we have accumulated *i* distinct coupons Wanted: $\mathbb{E}(T_n)$

 $Z_i = T_i - T_{i-1}$

 $T_n = T_1 + (T_2 - T_1) + (T_3 - T_2) + \dots + (T_n - T_{n-1}) = T_1 + Z_2 + \dots + Z_n$

 $\mathbb{E}(T_n) = \mathbb{E}(T_1) + \mathbb{E}(Z_2) + \mathbb{E}(Z_3) + \dots + \mathbb{E}(Z_n)$ $= 1 + \mathbb{E}(Z_2) + \mathbb{E}(Z_3) + \dots + \mathbb{E}(Z_n)$

Wanted: $\mathbb{E}(Z_i)$

 $T_i = #$ of rounds until we have accumulated *i* distinct coupons $Z_i = T_i - T_{i-1}$

Wanted: $\mathbb{E}(Z_i)$

If we have accumulated i - 1 coupons, the number Z_i of attempts needed to get the *i*-th coupon is **geometric** with parameter $p = 1 - \frac{(i-1)}{n}$.

 $T_i = \#$ of rounds until we have accumulated *i* distinct coupons

$$Z_{i} = T_{i} - T_{i-1} \qquad \mathbb{E}(Z_{i}) = \frac{1}{p} = \frac{n}{n-i+1}$$

$$\mathbb{E}(T_{n}) = 1 + \mathbb{E}(Z_{2}) + \mathbb{E}(Z_{3}) + \dots + \mathbb{E}(Z_{n})$$

$$= 1 + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$

$$= n \cdot \left(\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} + 1\right) = n \cdot H_{n} \approx n \cdot \ln(n)$$

$$In(n) \leq H_{n} \leq \ln(n) + 1$$

Agenda

- Linearity of Expectation
- Indicator Random Variables
- LOTUS
- Variance

Two Games

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}$$
, $\mathbb{P}(W_1 = -1) = \frac{2}{3}$

Two Games

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1

 $\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2 $\mathbb{P}(W_2 = 10) = \frac{1}{3}$, $\mathbb{P}(W_2 = -5) = \frac{2}{3}$ Which game would you <u>rather play</u>?

Two Games

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1 $\mathbb{P}(W_1 = 2) = \frac{1}{2}$, $\mathbb{P}(W_1 = -1) = \frac{2}{2}$

$$\mathbb{E}(W_1)=0$$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2 $\mathbb{P}(W_2 = 10) = \frac{1}{3}$, $\mathbb{P}(W_2 = -5) = \frac{2}{3}$ $\mathbb{E}(W_2) = 0$ Which game would you rather play?Somehow, Game 2 has higher volatility!

Same expectation, but clearly very different distribution. We want to capture the difference – New concept: Variance
Variance (Intuition, First Try) $\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$ $\mathbb{E}(W_1) = 0$ $2/3 = \frac{1}{2}, \frac{1}{3}$

New quantity (random variable): How far from the expectation? $\Delta(W_1) = W_1 - E[W_1]$

Variance (Intuition, First Try)

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\frac{1}{2/3} = \frac{1}{1} = \frac{1}{2}$$

$$\frac{1}{2/3} = \frac{1}{2} = \frac{1}{2}$$

New quantity (random variable): How far from the expectation? $\Delta(W_1) = W_1 - E[W_1]$

$$E[\Delta(W_1)] = E[W_1 - E[W_1]]$$

= $E[W_1] - E[E[W_1]]$
= $E[W_1] - E[W_1]$
= 0

Variance (Intuition, Better Try) $\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$ $\frac{2/3}{-1} = 0$ $\frac{2}{3}$

A better quantity (random variable): How far from the expectation? $\Delta(W_1) = (W_1 - E[W_1])^2$

$$E[\Delta(W_1)] = E[(W_1 - E[W_1])^2]$$

Variance (Intuition, Better Try) $\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$ $\frac{2/3}{-1} = 0$ $\frac{2}{3}$

A better quantity (random variable): How far from the expectation? $\Delta(W_1) = (W_1 - E[W_1])^2$ $\mathbb{P}(\Delta(W_1) = 1) = \frac{2}{3}$ $\mathbb{P}(\Delta(W_1) = 4) = \frac{1}{3}$ $E[\Delta(W_1)] = E[(W_1 - E[W_1])^2]$ $= \frac{2}{3} \cdot 1 + \frac{1}{3} \cdot 4$ = 2

A better quantity (random variable): How far from the expectation?

$$\Delta'(W_2) = (W_2 - E[W_2])^2$$
$$\mathbb{P}(\Delta'(W_2) = 25) = \frac{2}{3}$$
$$\mathbb{P}(\Delta'(W_2) = 100) = \frac{1}{3}$$

$$E[\Delta'(W_2)] = E[(W_2 - E[W_2])^2]$$
$$= \frac{2}{3} \cdot 25 + \frac{1}{3} \cdot 100$$
$$= 50$$

We say that W_2 has "higher variance" than W_1 .

Variance

Definition. The **variance** of a (discrete) RV *X* is

$$Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^{2}\right] = \sum_{x} \mathbb{P}_{X}(x) \cdot \left(x - \mathbb{E}(X)\right)^{2}$$

Recall $\mathbb{E}(X)$ is a **constant**, not a random variable itself.

Intuition: Variance is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance

<u>Intuition:</u> Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = 3.5$

Var(X) = ?

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = 3.5$

$$Var(X) = \sum_{x} \mathbb{P}(X = x) \cdot (x - \mathbb{E}(X))^{2}$$
$$= \frac{1}{6} [(1 - 3.5)^{2} + (2 - 3.5)^{2} + (3 - 3.5)^{2} + (4 - 3.5)^{2} + (5 - 3.5)^{2} + (6 - 3.5)^{2}]$$

$$= \frac{2}{6} [2.5^2 + 1.5^2 + 0.5^2] = \frac{2}{6} \left[\frac{25}{4} + \frac{9}{4} + \frac{1}{4} \right] = \frac{35}{12} \approx 2.91677 ..$$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs in picture have same expectation

Variance – Properties

Definition. The **variance** of a (discrete) RV *X* is

$$\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right] = \sum_{x} \mathbb{P}_X(x) \cdot \left(x - \mathbb{E}(X)\right)^2$$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

(Proof: Exercise!)

Theorem. $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Variance

Proof: $Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]$ - Recall $\mathbb{E}(X)$ is a **constant** $= \mathbb{E}[X^2 - 2\mathbb{E}(X) \cdot X + \mathbb{E}(X)^2]$ $= \mathbb{E}(X^2) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^2$ (linearity of expectation!) $= \mathbb{E}(X^2) - \mathbb{E}(X)^2$ $\mathbb{E}(X^2)$ and $\mathbb{E}(X)^2$ are different !

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = \frac{21}{6}$
- $\mathbb{E}(X^2) = \frac{91}{6}$

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{105}{36} \approx 2.91677$$

In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Example to show this:

• Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - What is $\mathbb{E}[X]$ and Var(X)? In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - E[X] = 0 and Var(X) = 1
- Let Y = -X
 - What is **E**[*Y*] and **V**ar(*Y*)?

In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - E[X] = 0 and Var(X) = 1
- Let Y = -X
 - -E[Y] = 0 and Var(Y) = 1

What is Var(X + Y)?