
CSE 312

Foundations of Computing II

Lecture 9: Linearity of Expectation, LOTUS, and Variance
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Slide Credit: Based on Stefano Tessaro’s slides for 312 19au 

incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & myself ☺

Aleks Jovcic



Agenda

• Linearity of Expectation

• Indicator Random Variables

• LOTUS

• Variance
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Coin flipping again

Suppose we flip a coin independently 𝑛 times with probability 
𝑝 of coming up Heads each time. Let the r.v. 𝑍 be the number 
of Heads in the 𝑛 coin flips. What is the p.m.f. of 𝑍 ?
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Expectation of Random Variable 

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected value of 𝑋 is

E 𝑋 = ෍

𝜔∈Ω

𝑋 𝜔 ⋅ Pr(𝜔)

or equivalently

E 𝑋 = ෍
𝑥∈ΩX

𝑥 ⋅ Pr(𝑋 = 𝑥)
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Intuition: “Weighted average” of the possible outcomes (weighted by probability)



Coin flipping again

Suppose we flip a coin independently 𝑛 times with probability 
𝑝 of coming up Heads each time. Let the r.v. 𝑍 be the number 
of Heads in the 𝑛 coin flips. What is the 𝔼(𝑍) ?
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𝔼 𝑍 = ෍

𝑘=0

𝑛

𝑘 ⋅ 𝑃(𝑍 = 𝑘)

This Photo by Unknown Author is 
licensed under CC BY-NC

The brute force method 

we flip 𝑛 coins, each one heads with probability 𝑝,

𝑍 is the number of heads, what is 𝔼(𝑍)?   

= ෍

𝑘=0

𝑛

𝑘 ⋅
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘 1 − 𝑝 𝑛−𝑘 = ෍

𝑘=1

𝑛
𝑛!

(𝑘 − 1)! 𝑛 − 𝑘 !
𝑝𝑘 1 − 𝑝 𝑛−𝑘

= 𝑛𝑝෍

𝑘=1

𝑛
(𝑛 − 1)!

(𝑘 − 1)! 𝑛 − 𝑘 !
𝑝𝑘−1 1 − 𝑝 𝑛−𝑘

= 𝑛𝑝෍

𝑘=0

𝑛−1
(𝑛 − 1)!

𝑘! 𝑛 − 1 − 𝑘 !
𝑝𝑘 1 − 𝑝 (𝑛−1)−𝑘

= 𝑛𝑝෍

𝑘=0

𝑛−1
𝑛 − 1

𝑘
𝑝𝑘 1 − 𝑝 (𝑛−1)−𝑘 = 𝑛𝑝 𝑝 + 1 − 𝑝

𝑛−1
= 𝑛𝑝 ⋅ 1 = 𝑛𝑝

= ෍

𝑘=0

𝑛

𝑘 ⋅
𝑛

𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘

http://www.pngall.com/baby-png
https://creativecommons.org/licenses/by-nc/3.0/


Linearity of Expectation (Idea)

Let’s say you and your friend sell fish for a living.
• Every day you catch X fish, with E[X] = 3.
• Every day your friend catches Y fish, with E[Y] = 7.

How many fish do the two of you bring in (Z = X + Y) on an 
average day? 



Linearity of Expectation (Idea)

Let’s say you and your friend sell fish for a living.
• Every day you catch X fish, with E[X] = 3.
• Every day your friend catches Y fish, with E[Y] = 7.

How many fish do the two of you bring in (Z = X + Y) on an 
average day? 

E[Z] = E[X + Y] = E[X] + E[Y] = 3 + 7 = 10



Linearity of Expectation (Idea)

Let’s say you and your friend sell fish for a living.
• Every day you catch X fish, with E[X] = 3.
• Every day your friend catches Y fish, with E[Y] = 7.

How many fish do the two of you bring in (Z = X + Y) on an 
average day? 

E[Z] = E[X + Y] = E[X] + E[Y] = 3 + 7 = 10
You can sell each fish for $5 at a store, but you need to pay $20 in 
rent. How much profit do you expect to make?  

E[5Z - 20] = 5E[Z] - 20 = 5 x 10 - 20 = 30



Linearity of Expectation – Proof 
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𝔼(𝑋 + 𝑌) = σ𝜔 𝑃(𝜔)(𝑋 𝜔 + 𝑌(𝜔))

= 𝔼(𝑋) + 𝔼(𝑌)

= σ𝜔𝑃 𝜔 𝑋 𝜔 + Σ𝜔𝑃(𝜔)𝑌(𝜔)

Theorem. For any two random variables 𝑋 and 𝑌

𝔼(𝑋 + 𝑌) = 𝔼(𝑋) + 𝔼(𝑌).   



Linearity of Expectation
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Theorem. For any two random variables 𝑋 and 𝑌

𝔼(𝑋 + 𝑌) = 𝔼(𝑋) + 𝔼(𝑌).   

Or, more generally: For any random variables 𝑋1, … , 𝑋𝑛,

𝔼(𝑋1 +⋯+ 𝑋𝑛) = 𝔼(𝑋1) + ⋯+ 𝔼(𝑋𝑛).   

Because: 𝔼(𝑋1 +⋯+ 𝑋𝑛) = 𝔼((𝑋1+⋯+ 𝑋𝑛−1) + 𝑋𝑛)

= 𝔼(𝑋1 +⋯+ 𝑋𝑛−1) + 𝔼(𝑋𝑛) = ⋯



Coin flipping again

Suppose we flip a coin independently 𝑛 times with probability 
𝑝 of coming up Heads each time. Let the r.v. 𝑍 be the number 
of Heads in the 𝑛 coin flips. What is the 𝔼(𝑍) ?
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Example – Coin  Tosses

we flip 𝑛 coins, each one heads with probability 𝑝

𝑍 is the number of heads, what is 𝔼 𝑍 ?   

- 𝑋𝑖 = ቊ
1, 𝑖−th coin−flip is heads
0, 𝑖−th coin−flip is tails.
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ℙ 𝑋𝑖 = 1 = 𝑝
ℙ 𝑋𝑖 = 0 = 1 − 𝑝

Fact. 𝑍 = 𝑋1 +⋯+ 𝑋𝑛

𝔼(𝑋𝑖) = 𝑝 ⋅ 1 + 1 − 𝑝 ⋅ 0 = 𝑝

Linearity of Expectation:
𝔼(𝑍) = 𝔼(𝑋1 +⋯+ 𝑋𝑛) = 𝔼(𝑋1) + ⋯+ 𝔼(𝑋𝑛)

= 𝑛 ⋅ 𝑝



Computing complicated expectations

Often boils down to the following three steps

● Decompose: Finding the right way to decompose the random 
variable into sum of simple random variables 

𝑋 = 𝑋1 +⋯+ 𝑋𝑛
● LOE: Observe linearity of expectation.

𝔼(𝑋) = 𝔼(𝑋1) + ⋯+ 𝔼(𝑋𝑛).   
● Conquer: Compute the expectation of each 𝑋𝑖

Often, 𝑋𝑖 are indicator (0/1) random variables.



Agenda

• Linearity of Expectation

• Indicator Random Variables

• LOTUS

• Variance
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Indicator random variable

For any event A, can define the indicator random variable X for A

𝑋 = ቊ
1 if event A occurs
0 if event A does not occur

𝐸 𝑋 = ℙ 𝐴 ⋅ 1 + 1 − ℙ 𝐴 ⋅ 0 = ℙ(𝐴)

ℙ 𝑋 = 1 = ℙ A
ℙ 𝑋 = 0 = 1 − ℙ A



Example: Returning Homeworks

• Class with n students, randomly hand back homeworks. All 
permutations equally likely.

• Let 𝑋 be the number of students who get their own HW

• what is 𝔼(𝑋)?

P
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)

1/6 1, 2, 3 3

1/6 1, 3, 2 1

1/6 2, 1, 3 1

1/6 2, 3, 1 0

1/6 3, 1, 2 0

1/6 3, 2, 1 1



Example: Returning Homeworks

• Class with n students, randomly hand back homeworks. All 
permutations equally likely.

• Let 𝑋 be the number of students who get their own HW

• what is 𝔼(𝑋)?

• Use Linearity of Expectation

P
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)

1/6 1, 2, 3 3

1/6 1, 3, 2 1

1/6 2, 1, 3 1

1/6 2, 3, 1 0

1/6 3, 1, 2 0

1/6 3, 2, 1 1

Decompose: What is 𝑋𝑖?



Example: Returning Homeworks

• Class with n students, randomly hand back homeworks. All 
permutations equally likely.

• Let 𝑋 be the number of students who get their own HW

• what is 𝔼(𝑋)?
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)

1/6 1, 2, 3 3

1/6 1, 3, 2 1

1/6 2, 1, 3 1

1/6 2, 3, 1 0

1/6 3, 1, 2 0

1/6 3, 2, 1 1

Decompose: 𝑋𝑖 indicates if student 𝑖 got their 
own HW back
LOE:

Conquer: What is 𝔼(𝑋𝑖)?          A. 
1

𝑛
B. 

1

𝑛−1
C.½



Pairs with same  birthday

● In a class of m students, on average how many pairs of 
people have the same birthday?

Decompose:

LOE:

Conquer:



Linearity of Expectation – Even stronger

21

Theorem. For any random variables 𝑋1, … , 𝑋𝑛, and real numbers 
𝑎1, … , 𝑎𝑛 ∈ ℝ,

𝔼(𝑎1𝑋1 +⋯+ 𝑎𝑛𝑋𝑛) = 𝑎1𝔼(𝑋1) + ⋯+ 𝑎𝑛𝔼(𝑋𝑛).   

Very important: In general, we do not have 𝔼 𝑋 ⋅ 𝑌 = 𝔼(𝑋) ⋅ 𝔼(𝑌)



Agenda

• Linearity of Expectation

• Indicator Random Variables

• LOTUS

• Variance
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In general 𝔼 𝑔(𝑋) ≠ 𝑔(𝔼 𝑋 )

E.g., 𝑋 = ቊ
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 1/2
−1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 1/2

𝔼 𝑋2 ≠ 𝔼 𝑋 2

How DO we compute 𝔼 𝑔(𝑋) ? 

Linearity is special!



Expectation of 𝑔(𝑋)

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected value of 
g(𝑋) is

E g(𝑋) = ෍

𝜔∈Ω

𝑔(𝑋 𝜔 ) ⋅ Pr(𝜔)

or equivalently

E g(𝑋) = ෍

𝑥∈𝑋(Ω)

𝑔(𝑥) ⋅ Pr(𝑋 = 𝑥)
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Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks. All 
permutations equally likely.

• Let 𝑋 be the number of students who get their own HW

• Let 𝑌 = (𝑋2+4) 𝑚𝑜𝑑 8.

• what is 𝔼(𝑌)?

P
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)

1/6 1, 2, 3 3

1/6 1, 3, 2 1

1/6 2, 1, 3 1

1/6 2, 3, 1 0

1/6 3, 1, 2 0

1/6 3, 2, 1 1



Rotating the table

n people are sitting around a circular table. There is a name tag in each 
place. Nobody is sitting in front of their own name tag.

Rotate the table by a random number k of positions between 1 and n-1 
(equally likely).

X is the number of people that end up front of their own name tag.

What is E(X)?

Decompose:

LOE:

Conquer:



Take Home FUN Example – Coupon Collector Problem

Say each round we get a random coupon 𝑋𝑖 ∈ {1, … , 𝑛}, how many rounds 
(in expectation) until we have one of each coupon?
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Formally: Outcomes in Ω are sequences of integers in {1, … , 𝑛} where 
each integer appears at least once (+ cannot be shortened).  

Example, 𝑛 = 3: 
Ω = { 1,2,3 , 1,1,2,3 , 1,2,2,3 , 1,2,3 , 1,1,1,3,3,3,3,3,3,2 , … }

ℙ 1,2,3 =
1

3
⋅
1

3
⋅
1

3 ℙ 1,1,2,2,2,3 =
1

3

6
…



Example – Coupon Collector Problem

Say each round we get a random coupon 𝑋𝑖 ∈ {1, … , 𝑛}, how many rounds 
(in expectation) until we have one of each coupon?
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𝑇𝑖 = # of rounds until we have accumulated 𝑖 distinct coupons

Wanted: 𝔼(𝑇𝑛)

𝑍𝑖 = 𝑇𝑖 − 𝑇𝑖−1
# of rounds needed to go from 𝑖 − 1 to 
𝑖 coupons 

[Aka: length of the sampled 𝜔]

Hard to think about 𝑇𝑛 directly, 
Can we decompose 𝑇𝑛 as a sum of 
simpler random variables? 



Example – Coupon Collector Problem
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𝑇𝑖 = # of rounds until we have accumulated 𝑖 distinct coupons

𝑇𝑛 = 𝑇1 + 𝑇2 − 𝑇1 + 𝑇3 − 𝑇2 +⋯+ 𝑇𝑛 − 𝑇𝑛−1 = 𝑇1 + 𝑍2 +⋯+ 𝑍𝑛

𝑍𝑖 = 𝑇𝑖 − 𝑇𝑖−1

𝔼(𝑇𝑛) = 𝔼(𝑇1) + 𝔼(𝑍2) + 𝔼(𝑍3) + ⋯+ 𝔼(𝑍𝑛)

= 1 + 𝔼(𝑍2) + 𝔼(𝑍3) + ⋯+ 𝔼(𝑍𝑛)

Wanted: 𝔼(𝑇𝑛)

Wanted: 𝔼(𝑍𝑖)



Example – Coupon Collector Problem
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𝑇𝑖 = # of rounds until we have accumulated 𝑖 distinct coupons

𝑍𝑖 = 𝑇𝑖 − 𝑇𝑖−1

If we have accumulated 𝑖 − 1 coupons, the number 𝑍𝑖 of attempts 

needed to get the 𝑖-th coupon is geometric with parameter 𝑝 = 1 −
(𝑖−1)

𝑛
.   

𝕡𝑍𝑖(1) = 𝑝 𝕡𝑍𝑖(2) = (1 − 𝑝)𝑝 𝕡𝑍𝑖(𝑖) = 1 − 𝑝 𝑖−1𝑝⋯

𝔼 𝑍𝑖 =
1

𝑝
=

𝑛

𝑛 − 𝑖 + 1

Wanted: 𝔼(𝑍𝑖)

Expectation of geometric distribution 
shown in last lecture, 
for the example #coin tosses to see 
first head



Example – Coupon Collector Problem
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𝑇𝑖 = # of rounds until we have accumulated 𝑖 distinct coupons

𝑍𝑖 = 𝑇𝑖 − 𝑇𝑖−1 𝔼(𝑍𝑖) =
1

𝑝
=

𝑛

𝑛 − 𝑖 + 1

𝔼(𝑇𝑛) = 1 + 𝔼(𝑍2) + 𝔼(𝑍3) + ⋯+ 𝔼(𝑍𝑛)

= 1 +
𝑛

𝑛 − 1
+

𝑛

𝑛 − 2
+⋯+

𝑛

1

= 𝑛 ⋅
1

𝑛
+

1

𝑛 − 1
+⋯+

1

2
+ 1 = 𝑛 ⋅ 𝐻𝑛 ≈ 𝑛 ⋅ ln(𝑛)

𝑛-th harmonic number

𝐻𝑛 = σ𝑖=1
𝑛 1

𝑖

ln 𝑛 ≤ 𝐻𝑛 ≤ ln 𝑛 + 1



Agenda

• Linearity of Expectation

• Indicator Random Variables

• LOTUS

• Variance
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Two Games

33

Game 1: In every round, you win $2 with probability 1/3, lose $1 with 
probability 2/3. 

𝑊1 = payoff in a round of Game 1

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3



Two Games
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Game 1: In every round, you win $2 with probability 1/3, lose $1 with 
probability 2/3. 

Game 2: In every round, you win $10 with probability 1/3, lose $5 with 
probability 2/3. 

Which game would you rather play?

𝑊1 = payoff in a round of Game 1

𝑊2 = payoff in a round of Game 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

ℙ 𝑊2 = 10 =
1

3
, ℙ 𝑊2 = −5 =

2

3



Two Games
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Game 1: In every round, you win $2 with probability 1/3, lose $1 with 
probability 2/3. 

Game 2: In every round, you win $10 with probability 1/3, lose $5 with 
probability 2/3. 

Which game would you rather play?

𝑊1 = payoff in a round of Game 1

𝑊2 = payoff in a round of Game 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

𝔼(𝑊2) = 0

𝔼(𝑊1) = 0

ℙ 𝑊2 = 10 =
1

3
, ℙ 𝑊2 = −5 =

2

3

Somehow, Game 2 has higher volatility!



Two Games
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0 +10−5

0−1 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

ℙ 𝑊2 = 10 =
1

3
, ℙ 𝑊2 = −5 =

2

3

2/3 1/3

1/3

2/3

Same expectation, but clearly very different distribution. 

We want to capture the difference – New concept: Variance



Variance (Intuition, First Try)
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0−1 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

2/3 1/3

New quantity (random variable): How far from the expectation?

Δ(𝑊1) = 𝑊1 − 𝐸[𝑊1]

𝔼 𝑊1 = 0



Variance (Intuition, First Try)
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0−1 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

2/3 1/3

New quantity (random variable): How far from the expectation?

Δ(𝑊1) = 𝑊1 − 𝐸[𝑊1]
𝐸[Δ 𝑊1 ] = 𝐸[𝑊1 − 𝐸 𝑊1 ]

= 𝐸 𝑊1 − 𝐸 𝐸 𝑊1

= 𝐸 𝑊1 − 𝐸 𝑊1

= 0

𝔼 𝑊1 = 0



Variance (Intuition, Better Try)
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0−1 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

2/3 1/3

A better quantity (random variable): How far from the expectation?

Δ(𝑊1) = 𝑊1 − 𝐸[𝑊1]
2

𝐸[Δ 𝑊1 ] = 𝐸[ 𝑊1 − 𝐸 𝑊1
2]

𝔼 𝑊1 = 0



Variance (Intuition, Better Try)
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0−1 2

ℙ 𝑊1 = 2 =
1

3
, ℙ 𝑊1 = −1 =

2

3

2/3 1/3

A better quantity (random variable): How far from the expectation?

Δ(𝑊1) = 𝑊1 − 𝐸[𝑊1]
2

ℙ(Δ(𝑊1) = 1) =
2

3

ℙ(Δ(𝑊1) = 4) =
1

3

𝐸[Δ 𝑊1 ] = 𝐸[ 𝑊1 − 𝐸 𝑊1
2]

=
2

3
⋅ 1 +

1

3
⋅ 4

= 2

𝔼 𝑊1 = 0



Variance (Intuition, Better Try)
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0 +10−5

ℙ 𝑊2 = 10 =
1

3
, ℙ 𝑊2 = −5 =

2

3

1/32/3

A better quantity (random variable): How far from the expectation?

Δ′(𝑊2) = 𝑊2 − 𝐸[𝑊2]
2

ℙ(Δ′(𝑊2) = 25) =
2

3

ℙ(Δ′(𝑊2) = 100) =
1

3

𝐸[Δ′ 𝑊2 ] = 𝐸[ 𝑊2 − 𝐸 𝑊2
2]

=
2

3
⋅ 25 +

1

3
⋅ 100

= 50



Variance
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0−1 22/3 1/3

0 +10−5 1/32/3 𝔼 Δ′ = 50

𝔼 Δ′ = 2

We say that 𝑊2 has “higher variance” than 𝑊1.  

𝑊2

𝑊1



Variance
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Definition. The variance of a (discrete) RV 𝑋 is

Var 𝑋 = 𝔼 𝑋 − 𝔼 𝑋
2
= σ𝑥𝕡𝑋 𝑥 ⋅ 𝑥 − 𝔼 𝑋

2

Recall 𝔼 𝑋 is a 
constant, not a random 
variable itself. 

Intuition: Variance is a quantity that measures, in expectation, how 
“far” the random variable is from its expectation. 



Variance
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Definition. The variance of a (discrete) RV 𝑋 is

Var 𝑋 = 𝔼 𝑋 − 𝔼 𝑋
2
= σ𝑥𝕡𝑋 𝑥 ⋅ 𝑥 − 𝔼 𝑋

2

Standard deviation: 𝜎 𝑋 = Var(𝑋)
Recall 𝔼 𝑋 is a 
constant, not a random 
variable itself. 

Intuition: Variance (or standard deviation) is a quantity that measures, 
in expectation, how “far” the random variable is from its expectation. 



Variance – Example 1

𝑋 fair die

• ℙ 𝑋 = 1 = ⋯ = ℙ 𝑋 = 6 = 1/6

• 𝔼 𝑋 = 3.5

45

Var X =?



Variance – Example 1

𝑋 fair die

• ℙ 𝑋 = 1 = ⋯ = ℙ 𝑋 = 6 = 1/6

• 𝔼 𝑋 = 3.5

46

Var X = σ𝑥ℙ 𝑋 = 𝑥 ⋅ 𝑥 − 𝔼 𝑋
2

=
1

6
1 − 3.5 2 + 2 − 3.5 2 + 3 − 3.5 2 + 4 − 3.5 2 + 5 − 3.5 2 + 6 − 3.5 2

=
2

6
2.52 + 1.52 + 0.52 =

2

6

25

4
+
9

4
+
1

4
=
35

12
≈ 2.91677…



Variance in Pictures

Captures how much 
“spread’ there is in a pmf

All pmfs in picture 

have same expectation
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Variance – Properties 
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Definition. The variance of a (discrete) RV 𝑋 is

Var 𝑋 = 𝔼 𝑋 − 𝔼 𝑋
2
= σ𝑥𝕡𝑋 𝑥 ⋅ 𝑥 − 𝔼 𝑋

2

Theorem. Var 𝑋 = 𝔼(𝑋2) − 𝔼 𝑋 2

Theorem. For any 𝑎, 𝑏 ∈ ℝ, Var 𝑎 ⋅ 𝑋 + 𝑏 = 𝑎2 ⋅ Var 𝑋

(Proof: Exercise!)



Variance
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Theorem. Var 𝑋 = 𝔼(𝑋2) − 𝔼 𝑋 2

Proof: Var 𝑋 = 𝔼 𝑋 − 𝔼 𝑋
2

= 𝔼 𝑋2 − 2𝔼 𝑋 ⋅ 𝑋 + 𝔼 𝑋 2

= 𝔼 𝑋2 − 2𝔼 𝑋 𝔼 𝑋 + 𝔼 𝑋 2

= 𝔼 𝑋2 − 𝔼 𝑋 2 (linearity of expectation!)

Recall 𝔼 𝑋 is a constant

𝔼 𝑋2 and 𝔼 𝑋 2

are different !



Variance – Example 1

𝑋 fair die

• ℙ 𝑋 = 1 = ⋯ = ℙ 𝑋 = 6 = 1/6

• 𝔼 𝑋 =
21

6

• 𝔼 𝑋2 =
91

6
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Var X = 𝔼 𝑋2 − 𝔼 𝑋 2 =
91

6
−

21

6

2

=
105

36
≈ 2.91677



In General, Var 𝑋 + 𝑌 ≠ Var 𝑋 + Var(𝑌)

Example to show this:

• Let 𝑋 be a r.v. with pmf ℙ 𝑋 = 1 = ℙ 𝑋 = −1 = 1/2

– What is E[𝑋] and Var(𝑋)?
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In General, Var 𝑋 + 𝑌 ≠ Var 𝑋 + Var(𝑌)

Example to show this:

• Let 𝑋 be a r.v. with pmf ℙ 𝑋 = 1 = ℙ 𝑋 = −1 = 1/2

– E 𝑋 = 0 and Var 𝑋 = 1

• Let 𝑌 = −𝑋

– What is E[𝑌] and Var(𝑌)?
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In General, Var 𝑋 + 𝑌 ≠ Var 𝑋 + Var(𝑌)

Example to show this:

• Let 𝑋 be a r.v. with pmf ℙ 𝑋 = 1 = ℙ 𝑋 = −1 = 1/2

– E 𝑋 = 0 and Var 𝑋 = 1

• Let 𝑌 = −𝑋

– E 𝑌 = 0 and Var 𝑌 = 1

What is Var(𝑋 + 𝑌)?
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