CSE 312
 Foundations of Computing II

Lecture 9: Linearity of Expectation, LOTUS, and Variance

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Agenda

- Linearity of Expectation
- Indicator Random Variables
- LOTUS
- Variance

Coin flipping again

$$
\begin{array}{ll}
n=5 & H-T T T \\
k=2 & \left.+1 T T H-p \cdot p \cdot(1-p) \cdot(1-p) \cdot(1-p)=p^{2}(1 p)^{3}\right) p(1-p)(1-p) p^{=} p^{2}(1-p)^{3}
\end{array}
$$

Suppose we flip a coin independently (in) times with probability (D) of coming up Heads each time. Let the riv. Z be the number of Heads in the n coin flips. What is the p.m.f. of Z ?

$$
\mathbb{P}(2=h)=\left\{\begin{array}{c}
k=0 \\
k=1 \\
\cdots
\end{array} \quad \mathbb{P}(2=k)=\binom{n}{h} p^{k}(1-p)^{n-k}\right.
$$

Expectation of Random Variable

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value of X is

$$
\mathrm{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot \operatorname{Pr}(\omega)
$$

or equivalently

$$
\mathrm{E}[X]=\sum_{x \in \Omega_{\mathrm{X}}} x \cdot \operatorname{Pr}(X=x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the $\mathbb{E}(Z)$?
$E[z]=\sum_{h=0}^{n} h\binom{n}{h} p^{h}(1-p)^{n-h}$

The brute force method

we flip n coins, each one heads with probability p, Z is the number of heads, what is $\mathbb{E}(Z)$?

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{k=0}^{n} k \cdot P(Z=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} k \cdot \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

$$
=n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} p^{k}(1-p)^{(n-1)-k}
$$

$$
=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}=n p(p+(1-p))^{n-1}=n p \cdot 1 \text { np }
$$

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch \mathbf{X} fish, with $\mathrm{E}[\mathrm{X}]=3$.
- Every day your friend catches Y fish, with $\mathrm{E}[\mathrm{Y}]=7$.

How many fish do the two of you bring in $\left(\underset{\sim}{(Z)}=\frac{X+Y}{4}\right)$ on an average day?

$$
E[z]=E[x+4]=\cdots=E[x]+E[y]=3+7=10
$$

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch X fish, with $\mathrm{E}[\mathrm{X}]=3$.
- Every day your friend catches Y fish, with $E[Y]=7$.

How many fish do the two of you bring in $(\mathbf{Z}=\mathbf{X}+\mathrm{Y})$ on an average day?

$$
\mathrm{E}[\mathrm{Z}]=\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]=3+7=10
$$

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch X fish, with $E[X]=3$.
- Every day your friend catches Y fish, with $E[Y]=7$.

How many fish do the two of you bring in $(\mathbf{Z}=\mathbf{X}+\mathrm{Y})$ on an average day?

$$
\mathrm{E}[\mathrm{Z}]=\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]=3+7=10
$$

You can sell each fish for $\$ 5$ at a store, but you need to pay $\$ 20$ in rent. How much profit do you expect to make?

$$
E[5 Z-20]=5 E[Z]-20=5 \times 10-20=30
$$

Linearity of Expectation - Proof

Theorem. For any two random variables X and Y

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

$$
\begin{aligned}
\mathbb{E}(X+Y) & =\sum_{\omega} P(\omega)(X(\omega)+Y(\omega)) \\
& =\sum_{2} P(\omega) X(\omega)+\sum_{\omega} P(\omega) Y(\omega) \\
& =\mathbb{E}(X)+\mathbb{E}(Y)
\end{aligned}
$$

Linearity of Expectation

Theorem. For any two random variables X and Y

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

Or, more generally: For any random variables X_{1}, \ldots, X_{n},

$$
\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right) .
$$

Because: $\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(\left(X_{1}+\cdots+X_{n-1}\right)+X_{n}\right)$

$$
=\mathbb{E}\left(X_{1}+\cdots+X_{n-1}\right)+\mathbb{E}\left(X_{n}\right)=\cdots
$$

Coin flipping again

$$
n=5 \quad Z_{i}=\neq 1 \text { of heads ir itu coin fop }
$$

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the rev. Z be the number of Heads in the n coin flips. What is the $\mathbb{E}(Z)$?

Example - Coin Tosses

we flip n coins, each one heads with probability p
Z is the number of heads, what is $\mathbb{E}(Z)$?

- $X_{i}=\left\{\begin{array}{l}1, i-\text { th coin-flip is heads } \\ 0, i-\text { th coin-flip is tails. }\end{array}\right.$

$$
\text { Fact. } Z=X_{1}+\cdots+X_{n}
$$

Linearity of Expectation:

$$
\mathbb{E}(Z)=\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right)=n \cdot p
$$

$$
\begin{aligned}
& \mathbb{P}\left(X_{i}=1\right)=p \\
& \mathbb{P}\left(X_{i}=0\right)=1-p
\end{aligned}
$$

$$
\mathbb{E}\left(X_{i}\right)=p \cdot 1+(1-p) \cdot 0=p
$$

Computing complicated expectations

Often boils down to the following three steps

- Decompose: Finding the right way to decompose the random variable into sum of simple random variables $Z=\zeta, \cdots \Sigma_{n}$

$$
X=X_{1}+\cdots+X_{n}
$$

- LOE: Observe linearity of expectation.

$$
\mathbb{E}(X)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right)
$$

- Conquer: Compute the expectation of each X_{i}

Often, X_{i} are indicator (0/1) random variables.

Agenda

- Linearity of Expectation
- Indicator Random Variables
- LOTUS
- Variance

Indicator random variable

For any event A, can define the indicator random variable X for A

$$
\begin{aligned}
& X=\left\{\begin{array}{cc}
(1) & \text { if event A occurs }
\end{array} \begin{array}{|c}
\mathbb{P}(X=1)=\mathbb{P}(\mathrm{A}) \\
0
\end{array} \quad \text { if event A does not occur } \quad \mathbb{P}(X=0)=1-\mathbb{P}(\mathrm{A})\right. \\
& E[X]=\mathbb{P}(A) X_{1}+(1 \geq \mathbb{P}(A))=0=P(A) \\
& z_{i}=\lambda \text { if the } \underbrace{\text { ito conflip is reach, } 0 \text { otwounten }} \\
& E[2 i]=T(2)=p
\end{aligned}
$$

Example: Returning Homeworks

$$
\angle O E+\text { incradus }
$$

- Class with n students, randomly hand back homeworks. All permutations equally likely.
$x_{i}=1$ ip the itu stuck gets then
- Let X be the number of students who get their own HW
- what is $\mathbb{E}(X)$? Deconpuse: $X=X_{1}+x_{2}+\ldots+X_{n}$

$$
n \div 3 f(x)=1
$$

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

$$
\begin{aligned}
& \text { CUE: } E(X]=E\left[X_{1}+\ldots X_{n}\right]=E\left[X_{1}\right] \cup \ldots E\left[X_{n}\right] \\
& \text { Conqu: } E\left[X_{i}\right]=B\left(X_{i}=1\right)=\frac{1}{n}
\end{aligned}
$$

$$
\frac{|E|}{|\Omega|}=\frac{(n-1)^{\prime}}{n!}=\frac{1}{n}
$$

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- what is $\mathbb{E}(X)$?
- Use Linearity of Expectation

$$
\text { Decompose: What is } X_{i} \text { ? }
$$

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- what is $\mathbb{E}(X)$?

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Decompose: X_{i} indicates if student i got their own HW back
LOE:

Conquer: What is $\mathbb{E}\left(X_{i}\right)$?

$$
\text { A. } \frac{1}{n} \text { B. } \frac{1}{n-1} \text { C. } 1 / 2
$$

Pairs with same birthday $\underset{\sim}{(A, B)=(B, A)} \underset{\sim}{265 \cdot 365} \frac{1}{2} m \cdot(m-1) \quad \frac{3651}{36}$

- In a class of m students, on average how many pairs of people have the same birthday?
$X_{i}=1$ if pair shares a belay
Decompose: $X=X_{1}+\ldots X_{n}$

$$
n=\# \text { of pairs }=\binom{m}{2}
$$

LOB: $E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]$

$$
E(X]=E\left[X_{i}\right] \cdot n
$$

Conquer: $E\left[X_{i}\right]=T P\left(X_{i}=1\right)=\frac{1}{365}$

$$
=\frac{\binom{n}{2}}{305}
$$

Linearity of Expectation - Even stronger

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\begin{gathered}
\mathbb{E}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)=a_{1} \mathbb{E}\left(X_{1}\right)+\cdots+a_{n} \mathbb{E}\left(X_{n}\right) . \\
E[a X]=a E[X] \quad E[X+b]=E[X]+b \\
E[X]+\bar{c}[b]
\end{gathered}
$$

Very important: In general, we do not have $\mathbb{E}(X \cdot Y)=\mathbb{E}(X) \cdot \mathbb{E}(Y)$

Agenda

- Linearity of Expectation
- Indicator Random Variables
- LOTUS
- Variance

Linearity is special!

In general $\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$
E.g., $X=\left\{\begin{array}{c}1 \text { with prob } 1 / 2 \\ -1 \text { with prob } 1 / 2\end{array}\right.$

$$
\mathbb{E}\left(X^{2}\right) \neq \mathbb{E}(X)^{2}
$$

How DO we compute $\mathbb{E}(g(X))$?

Expectation of $g(X)$

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value of $\mathrm{g}(X)$ is

$$
\mathrm{E}[\mathrm{~g}(X)]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot \operatorname{Pr}(\omega)
$$

or equivalently

$$
\mathrm{E}[\mathrm{~g}(X)]=\sum_{x \in X(\Omega)} g(x) \cdot \operatorname{Pr}(X=x)
$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- Let $Y=\left(X^{2}+4\right) \bmod 8$.
- what is $\mathbb{E}(Y)$?

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Rotating the table

n people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in front of their own name tag.
Rotate the table by a random number k of positions between 1 and $n-1$ (equally likely).
X is the number of people that end up front of their own name tag. What is $\mathrm{E}(\mathrm{X})$?

Decompose:

LOE:

Conquer:

Take Home FUN Example - Coupon Collector Problem

Say each round we get a random coupon $X_{i} \in\{1, \ldots, n\}$, how many rounds (in expectation) until we have one of each coupon?

Formally: Outcomes in Ω are sequences of integers in $\{1, \ldots, n\}$ where each integer appears at least once (+ cannot be shortened).

Example, $n=3$:

$$
\begin{aligned}
& \Omega=\{(1,2,3),(1,1,2,3),(1,2,2,3),(1,2,3),(1,1,1,3,3,3,3,3,3,2), \ldots\} \\
& \mathbb{P}((1,2,3))=\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \quad \mathbb{P}((1,1,2,2,2,3))=\left(\frac{1}{3}\right)^{6} \quad \ldots
\end{aligned}
$$

Example - Coupon Collector Problem

Say each round we get a random coupon $X_{i} \in\{1, \ldots, n\}$, how many rounds (in expectation) until we have one of each coupon?
$T_{i}=$ \# of rounds until we have accumulated i distinct coupons
[Aka: length of the sampled ω]
Wanted: $\mathbb{E}\left(T_{n}\right)$
Hard to think about T_{n} directly,
Can we decompose T_{n} as a sum of simpler random variables?
$Z_{i}=T_{i}-T_{i-1}$
\# of rounds needed to go from $i-1$ to i coupons

Example - Coupon Collector Problem

$T_{i}=$ \# of rounds until we have accumulated i distinct coupons
Wanted: $\mathbb{E}\left(T_{n}\right)$
$Z_{i}=T_{i}-T_{i-1}$

$$
T_{n}=T_{1}+\left(T_{2}-T_{1}\right)+\left(T_{3}-T_{2}\right)+\cdots+\left(T_{n}-T_{n-1}\right)=T_{1}+Z_{2}+\cdots+Z_{n}
$$

$$
\begin{aligned}
\mathbb{E}\left(T_{n}\right) & =\mathbb{E}\left(T_{1}\right)+\mathbb{E}\left(Z_{2}\right)+\mathbb{E}\left(Z_{3}\right)+\cdots+\mathbb{E}\left(Z_{n}\right) \\
& =1+\mathbb{E}\left(Z_{2}\right)+\mathbb{E}\left(Z_{3}\right)+\cdots+\mathbb{E}\left(Z_{n}\right)
\end{aligned}
$$

Wanted: $\mathbb{E}\left(Z_{i}\right)$

Example - Coupon Collector Problem

$T_{i}=$ \# of rounds until we have accumulated i distinct coupons
$Z_{i}=T_{i}-T_{i-1}$

Wanted: $\mathbb{E}\left(Z_{i}\right)$

If we have accumulated $i-1$ coupons, the number Z_{i} of attempts needed to get the i-th coupon is geometric with parameter $p=1-\frac{(i-1)}{n}$.

$$
\mathbb{P}_{z_{i}}(1)=p \quad \mathbb{P}_{z_{i}}(2)=(1-p) p \quad \cdots \quad \mathbb{P}_{z_{i}}(i)=(1-p)^{i-1} p
$$

$$
\begin{array}{ll}
\mathbb{E}\left[Z_{i}\right]=\frac{1}{p}=\frac{n}{n-i+1}+\cdots \cdots & \begin{array}{l}
\text { Expectation of geometric distribution } \\
\text { shown in last lecture, } \\
\text { for the example \#coin tosses to see } \\
\text { first head }
\end{array}
\end{array}
$$

Example - Coupon Collector Problem

$T_{i}=$ \# of rounds until we have accumulated i distinct coupons

$$
Z_{i}=T_{i}-T_{i-1} \quad \mathbb{E}\left(Z_{i}\right)=\frac{1}{p}=\frac{n}{n-i+1}
$$

$$
\mathbb{E}\left(T_{n}\right)=1+\mathbb{E}\left(Z_{2}\right)+\mathbb{E}\left(Z_{3}\right)+\cdots+\mathbb{E}\left(Z_{n}\right)
$$

$$
=1+\frac{n}{n-1}+\frac{n}{n-2}+\cdots+\frac{n}{1}
$$

$$
=n \cdot\left(\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1\right)=n \cdot H_{n} \approx n \cdot \ln (n)
$$

Agenda

- Linearity of Expectation
- Indicator Random Variables
- LOTUS
- Variance

Two Games

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.
$W_{1}=$ payoff in a round of Game 1
$\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$

Two Games

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.
$W_{1}=$ payoff in a round of Game 1
$\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$
Game 2: In every round, you win $\$ 10$ with probability $1 / 3$, lose $\$ 5$ with probability $2 / 3$.
$W_{2}=$ payoff in a round of Game 2
$\mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3}$
Which game would you rather play?

Two Games

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.
$W_{1}=$ payoff in a round of Game 1
$\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$

$$
\mathbb{E}\left(W_{1}\right)=0
$$

Game 2: In every round, you win $\$ 10$ with probability 1/3, lose $\$ 5$ with probability $2 / 3$.
$W_{2}=$ payoff in a round of Game 2
$\mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3}$

$$
\mathbb{E}\left(W_{2}\right)=0
$$

Which game would you rather play? Somehow, Game 2 has higher volatility!

$$
\begin{aligned}
& \mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3} \\
& \mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3} \\
& 2 / 3
\end{aligned}
$$

Same expectation, but clearly very different distribution. We want to capture the difference - New concept: Variance

Variance (Intuition, First Try)

New quantity (random variable): How far from the expectation?

$$
\Delta\left(W_{1}\right)=W_{1}-E\left[W_{1}\right]
$$

Variance (Intuition, First Try)

$$
\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}
$$

$$
\mathbb{E}\left(W_{1}\right)=0
$$

New quantity (random variable): How far from the expectation?

$$
\Delta\left(W_{1}\right)=W_{1}-E\left[W_{1}\right]
$$

$$
\begin{aligned}
E\left[\Delta\left(W_{1}\right)\right] & =E\left[W_{1}-E\left[W_{1}\right]\right] \\
& =E\left[W_{1}\right]-E\left[E\left[W_{1}\right]\right] \\
& =E\left[W_{1}\right]-E\left[W_{1}\right] \\
& =0
\end{aligned}
$$

Variance (Intuition, Better Try)

$$
\mathbb{E}\left(W_{1}\right)=0
$$

$$
\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}
$$

A better quantity (random variable): How far from the expectation?

$$
\Delta\left(W_{1}\right)=\left(W_{1}-E\left[W_{1}\right]\right)^{2}
$$

$$
E\left[\Delta\left(W_{1}\right)\right]=E\left[\left(W_{1}-E\left[W_{1}\right]\right)^{2}\right]
$$

Variance (Intuition, Better Try)

$$
\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}
$$

$$
\mathbb{E}\left(W_{1}\right)=0
$$

A better quantity (random variable): How far from the expectation?

$$
\begin{aligned}
& \Delta\left(W_{1}\right)=\left(W_{1}-E\left[W_{1}\right]\right)^{2} \\
& \mathbb{P}\left(\Delta\left(W_{1}\right)=1\right)=\frac{2}{3} \\
& \mathbb{P}\left(\Delta\left(W_{1}\right)=4\right)=\frac{1}{3}
\end{aligned}
$$

$$
E\left[\Delta\left(W_{1}\right)\right]=E\left[\left(W_{1}-E\left[W_{1}\right]\right)^{2}\right]
$$

$$
\begin{aligned}
& =\frac{2}{3} \cdot 1+\frac{1}{3} \cdot 4 \\
& =2
\end{aligned}
$$

Variance (Intuition, Better Try)

$$
\mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3}
$$

A better quantity (random variable): How far from the expectation?

$$
\begin{aligned}
& \Delta^{\prime}\left(W_{2}\right)=\left(W_{2}-E\left[W_{2}\right]\right)^{2} \\
& \mathbb{P}\left(\Delta^{\prime}\left(W_{2}\right)=25\right)=\frac{2}{3} \\
& \mathbb{P}\left(\Delta^{\prime}\left(W_{2}\right)=100\right)=\frac{1}{3} \\
& E\left[\Delta^{\prime}\left(W_{2}\right)\right]=E\left[\left(W_{2}-E\left[W_{2}\right]\right)^{2}\right] \\
& =\frac{2}{3} \cdot 25+\frac{1}{3} \cdot 100 \\
& =50
\end{aligned}
$$

We say that W_{2} has "higher variance" than W_{1}.

Variance

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=\sum_{x} \mathbb{P}_{X}(x) \cdot(x-\mathbb{E}(X))^{2}
$$

> Recall $\mathbb{E}(X)$ is a constant, not a random variable itself.

Intuition: Variance is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=\sum_{x} \mathbb{P}_{X}(x) \cdot(x-\mathbb{E}(X))^{2}
$$

Standard deviation: $\sigma(X)=\sqrt{\operatorname{Var}(X)}$
Recall $\mathbb{E}(X)$ is a
constant, not a random variable itself.

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance - Example 1

X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}(X)=3.5$
$\operatorname{Var}(\mathrm{X})=$?

Variance - Example 1

X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}(X)=3.5$
$\operatorname{Var}(\mathrm{X})=\sum_{x} \mathbb{P}(X=x) \cdot(x-\mathbb{E}(X))^{2}$
$=\frac{1}{6}\left[(1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}\right]$
$=\frac{2}{6}\left[2.5^{2}+1.5^{2}+0.5^{2}\right]=\frac{2}{6}\left[\frac{25}{4}+\frac{9}{4}+\frac{1}{4}\right]=\frac{35}{12} \approx 2.91677 \ldots$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs in picture
have same expectation

$$
\sigma^{2}=10
$$

$\sigma^{2}=5.83$

$$
\sigma^{2}=15
$$

$$
\sigma^{2}=19.7
$$

Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=\sum_{x} \mathbb{P}_{X}(x) \cdot(x-\mathbb{E}(X))^{2}
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$
(Proof: Exercise!)

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$

Variance

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$

$$
\text { Proof: } \begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[\left(X-\mathbb{E}\left(X^{\gamma}\right)\right)^{2}\right] \\
& =\mathbb{E}\left[X^{2}-2 \mathbb{E}(X) \cdot X+\mathbb{E}(X)^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-2 \mathbb{E}(X) \mathbb{E}(X)+\mathbb{E}(X)^{2} \\
& =\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2} \quad \text { (lineall } \mathbb{E}(X) \text { is a constant of expectation!) } \\
&
\end{aligned}
$$

Variance - Example 1

X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}(X)=\frac{21}{6}$
- $\mathbb{E}\left(X^{2}\right)=\frac{91}{6}$
$\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=\frac{105}{36} \approx 2.91677$

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Example to show this:

- Let X be a r.v. with $\operatorname{pmf} \mathbb{P}(X=1)=\mathbb{P}(X=-1)=1 / 2$
- What is $\mathrm{E}[X]$ and $\operatorname{Var}(X)$?

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Example to show this:

- Let X be a r.v. with $\operatorname{pmf} \mathbb{P}(X=1)=\mathbb{P}(X=-1)=1 / 2$
$-\mathrm{E}[X]=0$ and $\operatorname{Var}(X)=1$
- Let $Y=-X$
- What is $\mathrm{E}[Y]$ and $\operatorname{Var}(Y)$?

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=1 / 2$
$-\mathrm{E}[X]=0$ and $\operatorname{Var}(X)=1$
- Let $Y=-X$
$-\mathrm{E}[Y]=0$ and $\operatorname{Var}(Y)=1$

What is $\operatorname{Var}(X+Y)$?

