CSE 312
 Foundations of Computing II

Lecture 7: Conditional Independence

w

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer \& Anna ;)

Agenda

- SIndependence Example
- Conditional Independence
- Assumptions and Correlation \mathbb{C}
© Monty Hall Problem
- If time: Random Variables Introduction
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Example - Biased coin

We have a biased coin comes up Heads with probability $2 / 3$; Each flip is independent of all other flips. Suppose it is tossed 3 times.

$$
\begin{aligned}
& \mathbb{T}\left(\mathrm{H}_{1} \cap \mathrm{H}_{2} \cap H_{3}\right)=\mathbb{R}\left(\mathrm{H}_{1}\right) \mathbb{P}\left(\mathrm{H}_{2}\right) \mathbb{P}\left(H_{3}\right) \\
& \mathbb{P}(\underline{H H H})=\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}=\frac{8}{27} \\
& \mathbb{P}(\underline{T T T})=\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}=\left(\frac{1}{3}\right)^{3} \\
& \mathbb{P}(\underline{H T T})=\frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}
\end{aligned}
$$

Example - Biased coin

We have a biased coin comes up Heads with probability 2/3, independently of other flips. Suppose it is tossed 3 times.

$$
\mathbb{P}(2 \text { heads in } 3 \text { tosses })=
$$

$$
\begin{aligned}
& \text { ads in } 3 \text { tosses })= \\
& \mathbb{P}(H H T \cup H T H \cup T H H)=\mathbb{P}(H H T)+\mathbb{P}(H T H)+\mathbb{P}(T H M)
\end{aligned}
$$

$$
\left(\frac{2}{3}\right)^{\frac{2}{3}} \frac{1}{3} \quad\left(\frac{2}{3}\right)^{2} \frac{1}{3} \quad \cdots
$$

$3 \cdot\left(\frac{2}{3}\right)^{2} \frac{1}{3}$
A) $(2 / 3)^{2} 1 / 3$
B) $2 / 3$
C) $3(2 / 3)^{2} 1 / 3$
D) $(1 / 3)^{2}$

Agenda

- Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- If time: Random Variables Introduction
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are independent conditioned on C if

$$
\mathbb{P}(C) \neq 0 \text { and } \mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid C)=\mathbb{P}(\underline{\mathcal{A} \mid C}) \cdot \mathbb{P}(\mathcal{B} \mid C) .
$$

Plain Independence. Two events \mathcal{A} and \mathcal{B} are independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

Equivalence:

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A}) J$

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are independent conditioned on C if

$$
\mathbb{P}(C) \neq 0 \text { and } \mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid C)=\mathbb{P}(\mathcal{A} \mid C) \cdot \mathbb{P}(\mathcal{B} \mid C) .
$$

Equivalence:

$$
\nabla\left(A_{3} \mid A_{2} \cap A_{1}\right)
$$

- If $\mathbb{P}(\mathcal{A} \cap C) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A} \cap C)=\mathbb{P}(B \mid C)$
- If $\mathbb{P}(\mathcal{B} \cap C) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B} \cap C)=\mathbb{P}(\mathcal{A} \mid C)$

Plain Independence. Two events \mathcal{A} and \mathcal{B} are independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

Equivalence:

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$

Example - More coin tossing
Suppose there is a coin C 1 with $\operatorname{Pr}(\underline{\text { Head }})=0.3$ end a coin δ with $\operatorname{Pr}($ Head $)=0.9$, We pick one randomly with equal probability and flip that coin twice independently. What is the probability we get all heads?

$$
\begin{aligned}
\mathbb{P}(H H) & =\mathbb{P}\left(H H \cap C_{1}\right)+\mathbb{P}\left(H H \cap C_{2}\right) \\
& =\mathbb{P}\left(H \mid C_{1}\right) \mathbb{P}\left(C_{1}\right)+\mathbb{T}\left(H H \mid C_{2}\right) \mathbb{P}\left(C_{2}\right) \\
& =\mathbb{\mathbb { P } (H | C _ { 1 }) ^ { 2 } \mathbb { P } (C _ { 1 }) + \mathbb { P } (H | C _ { 2 }) ^ { 2 } \mathbb { P } (C _ { 2 })}
\end{aligned}
$$

Example - More coin tossing

Suppose there is a coin C1 with $\operatorname{Pr}($ Head $)=0.3$ and a coin C2 with
$\operatorname{Pr}($ Head $)=0.9$. We pick one randomly with equal probability and flip that coin twice independently. What is the probability we get all heads?

$$
\operatorname{Pr}(H H)=\operatorname{Pr}(H H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H H \mid C 2) \operatorname{Pr}(C 2)
$$

Example - More coin tossing

Suppose there is a coin C1 with $\operatorname{Pr}($ Head $)=0.3$ and a coin C2 with
$\operatorname{Pr}($ Head $)=0.9$. We pick one randomly with equal probability and flip that coin 2 times independently. What is the probability we get all heads?

$$
\operatorname{Pr}(H H)=\operatorname{Pr}(H H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H H \mid C 2) \operatorname{Pr}(C 2)
$$

$=\operatorname{Pr}(H \mid C 2)^{2} \operatorname{Pr}(C 1)+\operatorname{Pr}(H \mid C 2)^{2} \operatorname{Pr}(C 2) \quad$ Conditional Independence
$=0.3^{2} \cdot 0.5+0.9^{2} \cdot 0.5=0.45$

$$
\operatorname{Pr}(H)=\operatorname{Pr}(H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H \mid C 2) \operatorname{Pr}(C 2)=0.6
$$

Agenda

- Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- If time: Random Variables Introduction
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes
A : event that the main chute doesn't open

$$
\mathbb{P}(A)=0.02
$$

B : event that the backup doesn't open
$\mathbb{P}(B)=0.1$

- What is the chance that at least one opens assuming independence?

$$
\begin{aligned}
& P(A \cap B)=0.0 \% 1-\mathbb{P}(A \cap B) \\
& 1-(\mathbb{P}(A) \cdot \mathbb{P}(B)) \\
& 0.02 \cdot 0.1=0.998
\end{aligned}
$$

Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes
A : event that the main chute doesn't open
$\mathbb{P}(A)=0.02$
B : event that the backup doesn't open
$\mathbb{P}(B)=0.1$
- What is the chance that at least one opens assuming independence?
- Assuming independence doesn't justify the assumption! Both chutes could fail because of the same rare event e.g., freezing rain.

Correlation

- Pick a person at random
- A : event that the person has lung cancer
- B : event that the person is a heavy smoker
- Fact: $\underset{\sim}{\mathbb{P}}(A \mid B)=\underset{\sim}{1.17} \cdot \underset{\sim}{\mathbb{P}}(A)$
- Conclusions?

Correlation

- Pick a person at random
- A : event that the person has lung cancer
- B : event that the person is a heavy smoker
- Fact: $\mathbb{P}(A \mid B)=1.17 \cdot \mathbb{P}(A)$
- Conclusions?
- Smoking causes lung cancer.
- Smoking increases the probability of smoking by 17%.

Causality vs. Correlation

$$
\mathbb{P}(A \mid B)>\mathbb{P}(A)
$$

- Events A and B are positively correlated if

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

$$
\begin{aligned}
& \mathbb{P}(A \cap B)>\mathbb{P}(A) \cdot \mathbb{P}(B) \\
& \mathbb{P}(A \cap B)=\mathbb{P}(A \mathbb{B}) \mathbb{P}(B)
\end{aligned}
$$

- E.g. smoking and lung cancer.

- But A and B being positively correlated does not mean that A causes B or B causes A.

Causality vs. Correlation

- Events A and B are positively correlated if

$$
\mathbb{P}(A \cap B)>\mathbb{P}(A) \cdot \mathbb{P}(B)
$$

- But A and B being positively correlated does not mean that A causes B or B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Agenda

- Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- If time: Random Variables Introduction
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Monty Hall Problem

Suppose you're on a game show, and you're given the choice of three doors. Behind one of the doors is a car, behind the other, goats. You pick a door, say number 1, and the host, who knows what's behind the doors, opens another door, say number 3, which has a goat. He says to you, "Do you want to switch to door number 2?" Is it to your advantage to switch your choice of doors?

Assumptions

- The player is equally likely to pick each of the three doors.
- After the player picks a door, the host must open a different door with a goat behind it and offer the player the choice of staying with the original door or switching.
- If the host has a choice of which door to open, then he is equally likely to select each of them.

Should you switch or stay? $W=$ winy by sulk pot hum prom
$R(W)$

$$
\begin{aligned}
& \begin{array}{l}
\mathbb{T}\left(\underline{w}\left(\$_{1}\right) P(\$,) \rightarrow 0 \cdot \frac{1}{3}\right. \\
-\mathbb{P}(w / \$ 2) \nabla\left(\$_{2}\right) \rightarrow 1 \cdot \frac{1}{3}
\end{array} \\
& +\mathbb{T}\left(w / \|_{3}\right) \mathbb{m}\left(\phi_{3}\right)+y \cdot \frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

Agenda

- Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- If time: Random Variables Introduction
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Random Variables (Idea)

Often: We want to capture quantitative properties of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 2 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space (Ω, \mathbb{P}) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is called its range/support Ω_{X} Example. Number of heads in 2 independent coin flips $\Omega=\{$ HF, HT, TH, TH $\}$

$$
\Omega_{x}=\{0,1,2\}
$$

$$
\begin{aligned}
& 52,3,73 \rightarrow 7 \\
& 42,7,53 \rightarrow 7 \\
& \quad\{18,19,20\}
\end{aligned}
$$

20 balls labeled 1, 2, ..., 20 in a bin

$$
33,4 \geq 173
$$

- Draw a subset of 3 uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls
- Example: $X(2,7,5)=7$
- Example: $X(\underline{15,3,8})=15$
- What is $\left|\Omega_{X}\right| ?=18$
Ω_{x}

Agenda

- Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- If time: Random Variables Introduction
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Probability Mass Function (PMF)

Random variables

 partition the sample space.$\sum_{x \in X(\Omega)} \mathbb{P}(X=x)=1$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\} \stackrel{\text { def }}{=}\{\omega \in \Omega \mid X(\omega)=x\}
$$

We write $\mathbb{P}(X=x)=\mathbb{P}(\{X=x\})=\mathbb{P}(\{\omega \hat{\in} \in \Omega \mid X(\omega)=x\})$ where $\mathbb{P}(X=x)$ is the probability mass function (PMF) of X

Random variables partition the sample space.
 $\sum_{x \in X(\Omega)} \mathbb{P}(X=x)=1$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\} \stackrel{\text { def }}{=}\{\omega \in \Omega \mid X(\omega)=x\}
$$

We write $\mathbb{P}(X=x)=\mathbb{P}(\{X=x\})=\mathbb{P}(\{\omega \in \Omega \mid X(\omega)=x\})$ where $\mathbb{P}(X=x)$ is the probability mass function (PMF) of X

Random variables partition the sample space.

$$
\mathbb{P}(X=x)=1
$$

You also see this notation (e.g. in book):

$$
\mathbb{P}(X=x)=p_{X}(x)
$$

Probability Mass Function

Flipping two independent coins

$$
\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}
$$

$X=$ number of heads in the two flips

$$
X(H H)=2 \quad X(H T)=1 \quad X(T H)=1 \quad X(T T)=0
$$

$$
\Omega_{\mathrm{X}}=\{0,1,2\}
$$

What is $\operatorname{Pr}(X=k)$?

RV Example

20 balls labeled $1,2, \ldots, 20$ in a bin

- Draw a subset of 3 uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls

What is $\operatorname{Pr}(X=20)$?
A. $\binom{20}{2} /\binom{20}{3}$
B. $\binom{19}{2} /\binom{20}{3}$
C. $\quad 19^{2} /\binom{20}{3}$
D. $19 \cdot 18 /\binom{20}{3}$

Agenda

- Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- If time: Random Variables Introduction
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of where X specifies for any real number x, the probability that $X \leq x$.

$$
\mathrm{F}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

Go back to 2 coin clips, where X is the number of heads
$\operatorname{Pr}(X=x)= \begin{cases}\frac{1}{4}, & x=0 \\ \frac{1}{2}, & x=1 \\ \frac{1}{4}, & x=2\end{cases}$

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of where X specifies for any real number x, the probability that $X \leq x$.

$$
\mathrm{F}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

Go back to 2 coin clips, where X is the number of heads

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

