CSE 312

Foundations of Computing II

Lecture 7: Conditional Independence

Aleks Jovcic

Slide Credit: Based on Stefano Tessaro's slides for 312 19au

incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & Anna ©

· Agenda

- (Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- ◆ If time: Random Variables Introduction
 - Probability Mass Function (PMF)
 - Cumulative Distribution Function (CDF)

Example – Biased coin

We have a biased coin comes up Heads with probability 2/3; Each flip is independent of all other flips. Suppose it is tossed 3 times.

$$P(H_1 \cap H_2 \cap H_3) = R(H_1)P(H_2)P(H_3)$$

$$P(HHH) = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = \frac{8}{24}$$

$$P(TTT) = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = (\frac{1}{3})^3$$

$$P(HTT) = \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{3}{3}$$

Example – Biased coin

We have a biased coin comes up Heads with probability 2/3, independently of other flips. Suppose it is tossed 3 times.

$$P(2 \text{ heads in 3 tosses}) = P(1 \text{ HHT } 0 \text{ HTH } 0 \text{ THH } 1) = P(1 \text{ HHT } 1) + P(1 \text{ HHH }$$

Agenda

- Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- If time: Random Variables Introduction
 - Probability Mass Function (PMF)
 - Cumulative Distribution Function (CDF)

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are **independent** conditioned on \mathcal{C} if $\mathbb{P}(\mathcal{C}) \neq 0$ and $\mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid \mathcal{C}) = \mathbb{P}(\mathcal{A} \mid \mathcal{C}) \cdot \mathbb{P}(\mathcal{B} \mid \mathcal{C})$.

Plain Independence. Two events \mathcal{A} and \mathcal{B} are independent if

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$$

Equivalence:

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A}|\mathcal{B}) = \mathbb{P}(\mathcal{A})$

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are **independent** conditioned on \mathcal{C} if $\mathbb{P}(\mathcal{C}) \neq 0$ and $\mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid \mathcal{C}) = \mathbb{P}(\mathcal{A} \mid \mathcal{C}) \cdot \mathbb{P}(\mathcal{B} \mid \mathcal{C})$.

Equivalence:

- If $\mathbb{P}(A \cap C) \neq 0$, equivalent to $\mathbb{P}(B \mid A \cap C) = \mathbb{P}(B \mid C)$
- If $\mathbb{P}(\mathcal{B} \cap C) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} | \mathcal{B} \cap C) = \mathbb{P}(\mathcal{A} | C)$

Plain Independence. Two events \mathcal{A} and \mathcal{B} are independent if

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$$

Equivalence:

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A}|\mathcal{B}) = \mathbb{P}(\mathcal{A})$

Example - More coin tossing

Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with Pr(Head) = 0.9. We pick one randomly with equal probability and flip that coin twice independently. What is the probability we get all heads?

$$P(HH) = P(HH \land C_1) + P(HH \land C_2)$$

$$= P(HU \mid C_1)P(C_1) + P(HH|C_2)P(C_2)$$

$$= P(H|C_1)^2P(C_1) + P(H|C_2)^2P(C_2)$$

$$= (0.3)^2 0.5 - (0.9)^2 0.5$$

Example - More coin tossing

Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with Pr(Head) = 0.9. We pick one randomly with equal probability and flip that coin twice independently. What is the probability we get all heads?

$$Pr(HH) = Pr(HH \mid C1) Pr(C1) + Pr(HH \mid C2) Pr(C2)$$
 LTP

Example - More coin tossing

Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with Pr(Head) = 0.9. We pick one randomly with equal probability and flip that coin 2 times independently. What is the probability we get all heads?

$$Pr(HH) = Pr(HH \mid C1) Pr(C1) + Pr(HH \mid C2) Pr(C2)$$
 LTP

=
$$Pr(H \mid C2)^2 Pr(C1) + Pr(H \mid C2)^2 Pr(C2)$$
 Conditional Independence

$$= 0.3^2 \cdot 0.5 + 0.9^2 \cdot 0.5 = 0.45$$

$$Pr(H) = Pr(H \mid C1) Pr(C1) + Pr(H \mid C2) Pr(C2) = 0.6$$

Agenda

- Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- If time: Random Variables Introduction
 - Probability Mass Function (PMF)
 - Cumulative Distribution Function (CDF)

Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes
 - $\mathbb{P}(A) = 0.02$ A: event that the main chute doesn't open $\mathbb{P}(B) = 0.1$
 - B: event that the backup doesn't open
- What is the chance that at least one opens assuming independence?

Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes

A: event that the main chute doesn't open $\mathbb{P}(A) = 0.02$

B: event that the backup doesn't open $\mathbb{P}(B) = 0.1$

What is the chance that at least one opens assuming independence?

 Assuming independence doesn't justify the assumption! Both chutes could fail because of the same rare event e.g., freezing rain.

Correlation

- Pick a person at random
- A: event that the person has lung cancer
- B: event that the person is a heavy smoker
- Fact: $\mathbb{P}(A|B) = 1.17 \cdot \mathbb{P}(A)$
- Conclusions?

Correlation

- Pick a person at random
- A: event that the person has lung cancer
- B: event that the person is a heavy smoker
- Fact: $\mathbb{P}(A|B) = 1.17 \cdot \mathbb{P}(A)$
- Conclusions?
 - Smoking causes lung cancer.
 - Smoking increases the probability of smoking by 17%.

Causality vs. Correlation

• Events A and B are positively correlated if

$$\mathbb{P}(A \cap B) > \mathbb{P}(A) \cdot \mathbb{P}(B)$$

- E.g. smoking and lung cancer.
- But A and B being positively correlated does not mean that A causes B or B causes A.

Causality vs. Correlation

Events A and B are positively correlated if

$$\mathbb{P}(A \cap B) > \mathbb{P}(A) \cdot \mathbb{P}(B)$$

• But A and B being positively correlated does not mean that A causes B or B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Agenda

- Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- If time: Random Variables Introduction
 - Probability Mass Function (PMF)
 - Cumulative Distribution Function (CDF)

Monty Hall Problem

Suppose you're on a game show, and you're given the choice of three doors. Behind one of the doors is a car, behind the other, goats. You pick a door, say number 1, and the host, who knows what's behind the doors, opens another door, say number 3, which has a goat. He says to you, "Do you want to switch to door number 2?" Is it to your advantage to switch your choice of doors?

Assumptions

- The player is equally likely to pick each of the three doors.
- After the player picks a door, the host must open a different door with a goat behind it and offer the player the choice of staying with the original door or switching.
- If the host has a choice of which door to open, then he is equally likely to select each of them.

Should you switch or stay?

W = WMmy by souther for how former
close # 1

\$, \$, \$,

Agenda

- Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- If time: Random Variables Introduction
 - Probability Mass Function (PMF)
 - Cumulative Distribution Function (CDF)

Random Variables (Idea)

Often: We want to capture quantitative properties of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 2 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space (Ω, \mathbb{P}) is a function $X: \Omega \to \mathbb{R}$.

2(X)

The set of values that X can take on is called its range/support Ω_X

Example. Number of heads in 2 independent coin flips $\Omega = \{HH, HT, TH, TT\}$

RV Example

```
$2,3,7377
$2,7,7377
$18,19,20}
$3,4,173
```

20 balls labeled 1, 2, ..., 20 in a bin

- Draw a subset of 3 uniformly at random
- Let X = maximum of the 3 numbers on the balls
 - Example: X(2, 7, 5) = 7
 - Example: X(15, 3, 8) = 15
- What is $|\Omega_X|$? = 18

Agenda

- Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- If time: Random Variables Introduction
 - Probability Mass Function (PMF)
 - Cumulative Distribution Function (CDF)

Probability Mass Function (PMF)

Random variables partition the sample space.

$$\sum_{x \in X(\Omega)} \mathbb{P}(X = x) = 1$$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event

$${X = x} \stackrel{\text{def}}{=} {\omega \in \Omega \mid X(\omega) = x}$$

We write $\mathbb{P}(X = x) = \mathbb{P}(\{X = x\}) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$ where $\mathbb{P}(X = x)$ is the probability mass function (PMF) of X

Random variables partition the sample space.

$$\sum_{X \in X(\Omega)} \mathbb{P}(X = x) = 1$$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event

$${X = x} \stackrel{\text{def}}{=} {\omega \in \Omega \mid X(\omega) = x}$$

We write $\mathbb{P}(X = x) = \mathbb{P}(\{X = x\}) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$ where $\mathbb{P}(X = x)$ is the probability mass function (PMF) of X

Random variables partition the sample space.

$$\sum_{X \in X(\Omega)} \mathbb{P}(X = x) = 1$$

You also see this notation (e.g. in book):

$$\mathbb{P}(X=x)=p_X(x)$$

Probability Mass Function

Flipping two independent coins

$$\Omega = \{HH, HT, TH, TT\}$$

$$X =$$
 number of heads in the two flips

$$X(HH) = 2$$

$$X(HT) = 1$$

$$X(TH) = 1$$

$$X(HH) = 2$$
 $X(HT) = 1$ $X(TH) = 1$ $X(TT) = 0$

$$\Omega_{\rm X} = \{0, 1, 2\}$$

What is Pr(X = k)?

RV Example

20 balls labeled 1, 2, ..., 20 in a bin

- Draw a subset of 3 uniformly at random
- Let X = maximum of the 3 numbers on the balls

What is Pr(X = 20)?

A.
$$\binom{20}{2} / \binom{20}{3}$$
B. $\binom{19}{2} / \binom{20}{3}$
C. $\binom{19^2}{3} / \binom{20}{3}$
D. $\binom{19 \cdot 18}{3} / \binom{20}{3}$

Agenda

- Independence Example
- Conditional Independence
- Assumptions and Correlation
- Monty Hall Problem
- If time: Random Variables Introduction
 - Probability Mass Function (PMF)
 - Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function of where X specifies for any real number x, the probability that $X \leq x$.

$$F_X(x) = Pr(X \le x)$$

Go back to 2 coin clips, where *X* is the number of heads

$$\Pr(X = x) = \begin{cases} \frac{1}{4}, & x = 0\\ \frac{1}{2}, & x = 1\\ \frac{1}{4}, & x = 2 \end{cases}$$

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function of where X specifies for any real number x, the probability that $X \leq x$.

$$F_X(x) = Pr(X \le x)$$

Go back to 2 coin clips, where *X* is the number of heads

$$\Pr(X = x) = \begin{cases} \frac{1}{4}, & x = 0\\ \frac{1}{2}, & x = 1\\ \frac{1}{4}, & x = 2 \end{cases} \qquad F_X(x) = \begin{cases} 0, & x < 0\\ \frac{1}{4}, & 0 \le x < 1\\ \frac{3}{4}, & 1 \le x < 2\\ 1, & 2 \le x \end{cases} \xrightarrow{0.25}$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

Pr(ω)	ω	$X(\omega)$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1