
CSE 312

Foundations of Computing II

Lecture 6: More Conditional Probability
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Slide Credit: Based on Stefano Tessaro’s slides for 312 19au 

incorporating ideas from Anna Karlin, Alex Tsun, Rachel Lin, Hunter Schafer & myself ☺

Aleks Jovcic



Agenda

• Review: Conditional Probability, Bayes

• Law of Total Probability (w/ Bayes)

• Chain Rule

• Independence

• Conditional Independence

• Assumptions and Correlation

• Bonus: Monty Hall Problem

2



Last Class:

• Conditional Probability 

• Bayes Theorem
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ℙ ℬ 𝒜 =
ℙ 𝒜 ∩ ℬ

ℙ 𝒜

ℙ 𝐴 𝐵 =
ℙ 𝐵 𝐴 ℙ(𝐴)

ℙ(𝐵)



Agenda

• Review: Conditional Probability, Bayes

• Law of Total Probability (w/ Bayes)

• Chain Rule

• Independence

• Conditional Independence

• Assumptions and Correlation

• Bonus: Monty Hall Problem
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Law of Total Probability (Idea)

If we know 𝐸1, 𝐸2, … , 𝐸𝑛 partition Ω, what can we say about 𝑃(𝐹)
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Law of Total Probability (LTP)

Using the definition of conditional probability 𝑃 𝐹 ∩ 𝐸 = 𝑃 𝐹 𝐸 𝑃(𝐸)

We can get the alternate form of this that show

𝑃 𝐹 =෍

𝑖=1

𝑛

𝑃 𝐹 𝐸𝑖 𝑃(𝐸𝑖)
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Definition. If events 𝐸1, 𝐸2, … , 𝐸𝑛 partition the sample space Ω, then for any event F

𝑃 𝐹 = 𝑃 𝐹 ∩ 𝐸1 + …+ 𝑃 𝐹 ∩ 𝐸𝑛 =෍

𝑖=1

𝑛

𝑃(𝐹 ∩ 𝐸𝑖)



Another Contrived Example

Alice has two pockets: 
• Left pocket: Two red balls, two green balls
• Right pocket: One red ball, two green balls.

Alice picks a random ball from a random pocket. 
[Both pockets equally likely, each ball equally likely.]

What is ℙ R ?
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Sequential Process – Non-Uniform Case
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Right Red

Left Green

Right

Left

Right Green

Left Red

• Left pocket: Two red, two green

• Right pocket: One red, two green.

• Alice picks a random ball from a 
random pocket



Sequential Process – Non-Uniform Case
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ℙ R = ℙ R ∩ Left + ℙ R ∩ Right

= ℙ Left × ℙ R|Left + ℙ Right × ℙ R|Right

=
1

2
×
1

2
+
1

2
×
1

3
=
1

4
+
1

6
=

5

12

(Law of total probability)

R R

L G

1/2

1/2

1/2

1/3

2/3
Right

Left

1/2

R G

L R
1/3 = 𝒫 𝑅 R) and 2/3 = 𝒫 𝐺 R)

• Left pocket: Two red, two green

• Right pocket: One red, two green.



Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let 𝐸1, 𝐸2, … , 𝐸𝑛 be a partition of the 
sample space, and 𝐹 and event. Then,

𝑃 𝐸1 𝐹) =
𝑃 𝐹 𝐸1 𝑃(𝐸1)

𝑃(𝐹)
=

𝑃 𝐹 𝐸1 𝑃 𝐸1
σ𝑖=1
𝑛 𝑃 𝐹 𝐸𝑖 𝑃 𝐸𝑖

Simple Partition: In particular, if 𝐸 is an event with non-zero 
probability, then 

𝑃 𝐸 𝐹) =
𝑃 𝐹 𝐸 𝑃(𝐸)

𝑃 𝐹 𝐸 𝑃 𝐸 + 𝑃 𝐹 𝐸𝐶 𝑃(𝐸𝐶)
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Example – Zika Testing

This example and following slides are from Lisa Yan (Stanford). 11

Usually no or mild symptoms (rash); sometimes 
severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns 
“positive”, what is the likelihood that you 
actually have the disease?

• Tests for diseases are rarely 100% accurate.



Example – Zika Testing

Suppose we know the following Zika stats
– A test is 98% effective at detecting Zika (“true positive”)

– However, the test yields a “false positive” 1% of the time

– 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T).
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A) Less than 0.25
B) Between 0.25 and 0.5
C) Between 0.5 and 0.75
D) Between 0.75 and 1



Example – Zika Testing

Suppose we know the following Zika stats
– A test is 98% effective at detecting Zika (“true positive”)

– However, the test yields a “false positive” 1% of the time

– 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T).
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Example – Zika Testing

Suppose we know the following Zika stats
– A test is 98% effective at detecting Zika (“true positive”)   100%

– However, the test may yield a “false positive” 1% of the time    10/995 =  approximately 1%

– 0.5% of the US population has Zika.  5 people have it.

What is the probability you have Zika (event Z) if you test positive (event T).
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Suppose we had 1000 people:
• 5 have Zika and test positive
• 985 do not have Zika and test negative
• 10 do not have Zika and test positive

5

5 + 10
=
1

3
≈ 0.33

Demo

Have zika blue, don’t pink

https://web.stanford.edu/class/cs109/demos/medicalBayes.html


Philosophy – Updating Beliefs

While it’s not 98% that you have the disease, your beliefs changed drastically

Z = you have Zika

T = you test positive for Zika
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Prior: P(Z)

I have a 0.5% chance 
of having Zika

Posterior: P(Z|T)

I now have a 33% 
chance of having Zika 

after the test.

Receive positive 
test result



Example – Zika Testing

Suppose we know the following Zika stats
– A test is 98% effective at detecting Zika (“true positive”)

– However, the test may yield a “false positive” 1% of the time

– 0.5% of the US population has Zika.

What is the probability you test negative (event ത𝑇) if you have Zika (event 𝑍)?
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Conditional Probability Define a Probability Space

17

The probability conditioned on 𝐴 follows the same properties as 
(unconditional) probability.

Example. ℙ ℬ𝑐 𝒜 = 1 − ℙ(ℬ|𝒜)



Conditional Probability Define a Probability Space
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The probability conditioned on 𝐴 follows the same properties as 
(unconditional) probability.

Example. ℙ ℬ𝑐 𝒜 = 1 − ℙ(ℬ|𝒜)

Formally. (Ω, ℙ) is a probability space + ℙ 𝒜 > 0

(𝒜,ℙ(⋅ |𝒜)) is a probability space



Agenda

• Review: Conditional Probability, Bayes

• Law of Total Probability (w/ Bayes)

• Chain Rule

• Independence

• Conditional Independence

• Assumptions and Correlation

• Bonus: Monty Hall Problem
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Chain Rule
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ℙ ℬ 𝒜 =
ℙ 𝒜 ∩ ℬ

ℙ 𝒜
ℙ 𝒜 ∩ ℬ = ℙ 𝒜 ℙ ℬ 𝒜



Chain Rule
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ℙ ℬ 𝒜 =
ℙ 𝒜 ∩ ℬ

ℙ 𝒜
ℙ 𝒜 ∩ ℬ = ℙ 𝒜 ℙ ℬ 𝒜

Theorem. (Chain Rule) For events 𝒜1, 𝒜2, … ,𝒜𝑛 , 

ℙ 𝒜1 ∩⋯∩𝒜𝑛 = ℙ 𝒜1 ⋅ ℙ 𝒜2 𝒜1 ⋅ ℙ(𝒜3|𝒜1 ∩𝒜2)

⋯ℙ(𝒜𝑛|𝒜1 ∩𝒜2 ∩⋯∩𝒜𝑛−1)

An easy way to remember: We have n tasks and we can do them sequentially, 
conditioning on the outcome of previous tasks



Chain Rule Example 

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 
cards in order. (uniform probability space).

What is P ( ) = P(A ∩ B ∩ C)?

A: Ace of Spades First
B:  10 of Clubs Second
C: 4 of Diamonds Third



Chain Rule Example 

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 
cards in order. (uniform probability space).

What is P ( ) = P(A ∩ B ∩ C)?

A: Ace of Spades First
B:  10 of Clubs Second
C: 4 of Diamonds Thirdℙ 𝐴 ⋅ ℙ 𝐵 𝐴 ⋅ ℙ 𝐶 𝐴 ∩ 𝐵

1

52
⋅
1

51
⋅
1

50



Agenda

• Review: Conditional Probability, Bayes

• Law of Total Probability (w/ Bayes)

• Chain Rule

• Independence

• Conditional Independence

• Assumptions and Correlation

• Bonus: Monty Hall Problem
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Independence

25

Alternatively,
• If ℙ 𝒜 ≠ 0, equivalent to ℙ ℬ 𝒜 = ℙ 𝐵
• If ℙ ℬ ≠ 0, equivalent to ℙ 𝒜 ℬ = ℙ 𝒜

Definition. If two events 𝒜 and ℬ are independent then

ℙ 𝒜 ∩ ℬ = ℙ 𝒜 ⋅ ℙ(ℬ).

“The probability that ℬ occurs after observing 𝒜” -- Posterior
=  “The probability that ℬ occurs” -- Prior  



Example -- Independence
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Toss a coin 3 times. Each of 8 outcomes equally likely. 

• A = {at most one T} = {HHH, HHT, HTH, THH}

• B = {at most 2 Heads}= {HHH}c

Independent?

ℙ 𝒜 ∩ ℬ = ℙ 𝒜 ⋅ ℙ(ℬ)
?

Poll:
A. Yes, independent
B. No 



Often probability space Ω,ℙ is defined using independence
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Events generated independently ➔ their probabilities satisfy independence



Not necessarily 

This can be counterintuitive!



Example – Network Communication

A
B

C

D

p

r

q

s

Each link works with the probability given, independently. 
What’s the probability A and D can communicate? 

ℙ 𝐴𝐷 = ?



Example – Network Communication

A
B

C

D

p

r

q

s

Each link works with the probability given, independently. 
What’s the probability A and D can communicate? 

ℙ 𝐴𝐵 ∩ 𝐵𝐷 = ℙ 𝐴𝐵 ⋅ ℙ 𝐵𝐷 = 𝑝𝑞

ℙ 𝐴𝐶 ∩ 𝐶𝐷 = ℙ 𝐴𝐶 ⋅ ℙ 𝐶𝐷 = 𝑟𝑠

ℙ 𝐴𝐷 = ℙ 𝐴𝐵 ∩ 𝐵𝐷 𝑜𝑟 𝐴𝐶 ∩ 𝐶𝐷

= ℙ 𝐴𝐵 ∩ 𝐵𝐷) + ℙ (𝐴𝐶 ∩ 𝐶𝐷 - ℙ 𝐴𝐵 ∩ 𝐵𝐷 ∩ 𝐴𝐶 ∩ 𝐶𝐷

ℙ 𝐴𝐵 ∩ 𝐵𝐷 ∩ 𝐴𝐶 ∩ 𝐶𝐷 = ℙ 𝐴𝐵 ⋅ ℙ 𝐵𝐷 ⋅ ℙ 𝐴𝐶 ⋅ ℙ 𝐶𝐷 = 𝑝𝑞𝑟𝑠



Example – Biased coin

We have a biased coin comes up Heads with probability 2/3; Each flip is 
independent of all other flips. Suppose it is tossed 3 times.

ℙ 𝐻𝐻𝐻 =

ℙ 𝑇𝑇𝑇 =

ℙ 𝐻𝑇𝑇 =

will go over next lecture



Example – Biased coin

We have a biased coin comes up Heads with probability 2/3, 
independently of other flips. Suppose it is tossed 3 times.

ℙ 2 ℎ𝑒𝑎𝑑𝑠 𝑖𝑛 3 𝑡𝑜𝑠𝑠𝑒𝑠 =

A) (2/3)2 1/3 
B) 2/3
C) 3 (2/3)2 1/3 
D) (1/3)2



Agenda

• Review: Conditional Probability, Bayes

• Law of Total Probability (w/ Bayes)

• Chain Rule

• Independence

• Conditional Independence

• Assumptions and Correlation

• Bonus: Monty Hall Problem
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ended here for today



Plain Independence. Two events 𝒜 and ℬ are independent if

ℙ 𝒜 ∩ ℬ = ℙ 𝒜 ⋅ ℙ(ℬ).

Conditional Independence
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Equivalence:
• If ℙ 𝒜 ≠ 0, equivalent to ℙ ℬ 𝒜 = ℙ 𝐵
• If ℙ ℬ ≠ 0, equivalent to ℙ 𝒜 ℬ = ℙ 𝒜

Definition. Two events 𝒜 and ℬ are independent conditioned on 𝐶 if
ℙ 𝐶 ≠ 0 and ℙ 𝒜 ∩ ℬ | 𝐶 = ℙ 𝒜 | 𝐶 ⋅ ℙ ℬ 𝐶).



Plain Independence. Two events 𝒜 and ℬ are independent if

ℙ 𝒜 ∩ ℬ = ℙ 𝒜 ⋅ ℙ(ℬ).

Conditional Independence
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Equivalence:
• If ℙ 𝒜 ≠ 0, equivalent to ℙ ℬ 𝒜 = ℙ 𝐵
• If ℙ ℬ ≠ 0, equivalent to ℙ 𝒜 ℬ = ℙ 𝒜

Definition. Two events 𝒜 and ℬ are independent conditioned on 𝐶 if
ℙ 𝐶 ≠ 0 and ℙ 𝒜 ∩ ℬ | 𝐶 = ℙ 𝒜 | 𝐶 ⋅ ℙ ℬ 𝐶).

Equivalence:
• If ℙ 𝒜 ∩ 𝐶 ≠ 0, equivalent to ℙ ℬ 𝒜 ∩ 𝐶 = ℙ 𝐵 | 𝐶
• If ℙ ℬ ∩ 𝐶 ≠ 0, equivalent to ℙ 𝒜 ℬ ∩ 𝐶 = ℙ 𝒜 | 𝐶



Example – More coin tossing

Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with 
Pr(Head) = 0.9. We pick one randomly with equal probability and flip that 
coin twice independently. What is the probability we get all heads?

Pr(𝐻𝐻) = Pr(𝐻𝐻 | 𝐶1) Pr(𝐶1) + Pr(𝐻𝐻 | 𝐶2) Pr(𝐶2) LTP



Example – More coin tossing

Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with 
Pr(Head) = 0.9. We pick one randomly with equal probability and flip that 
coin 2 times independently. What is the probability we get all heads?

Pr(𝐻𝐻) = Pr(𝐻𝐻 | 𝐶1) Pr(𝐶1) + Pr(𝐻𝐻 | 𝐶2) Pr(𝐶2)

= Pr(𝐻 𝐶2 2Pr(𝐶1) + Pr(𝐻 𝐶2 2 Pr(𝐶2)

= 0.32 ⋅ 0.5 + 0.92 ⋅ 0.5 = 0.45

LTP

Conditional Independence

Pr(𝐻) = Pr(𝐻 | 𝐶1) Pr(𝐶1) + Pr(𝐻 𝐶2 Pr 𝐶2 = 0.6



Agenda

• Review: Conditional Probability, Bayes

• Law of Total Probability (w/ Bayes)

• Chain Rule

• Independence

• Conditional Independence

• Assumptions and Correlation

• Bonus: Monty Hall Problem
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Correlation

● Pick a person at random
● 𝐴 : event that the person has lung cancer
● 𝐵 : event that the person is a heavy smoker

● Fact:   ℙ 𝐴 𝐵 = 1.17 ⋅ ℙ(𝐴)

● Conclusions?

38



Correlation

● Pick a person at random
● 𝐴 : event that the person has lung cancer
● 𝐵 : event that the person is a heavy smoker

● Fact:   ℙ 𝐴 𝐵 = 1.17 ⋅ ℙ(𝐴)

● Conclusions?

○ Lung cancer increases the the probability of smoking by 17%.

○ Lung cancer causes smoking.
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Causality vs. Correlation
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● Events 𝐴 and 𝐵 are positively correlated if

ℙ 𝐴 ∩ 𝐵 > ℙ 𝐴 ⋅ ℙ 𝐵

● E.g. smoking and lung cancer.

● But 𝐴 and 𝐵 being positively correlated does not mean that 𝐴 causes 𝐵 or 𝐵

causes 𝐴.



Causality vs. Correlation
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● Events 𝐴 and 𝐵 are positively correlated if

ℙ 𝐴 ∩ 𝐵 > ℙ 𝐴 ⋅ ℙ 𝐵

● But 𝐴 and 𝐵 being positively correlated does not mean that 𝐴 causes 𝐵 or 𝐵
causes 𝐴.

Other examples:
● Tesla owners are more likely to be rich. That does not mean poor people should 

buy a Tesla to get rich.
● People who go to the opera are more likely to have a good career. That does not 

mean that going to the opera will improve your career.
● Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?



Independence as an assumption

● People often assume it without justification.
● Example: A sky diver has two chutes

● What is the chance that at least one opens assuming independence?

42

𝐴 : event that the main chute doesn’t open ℙ 𝐴 = 0.02
𝐵 : event that the backup doesn’t open ℙ 𝐵 = 0.1



Independence as an assumption

● People often assume it without justification.
● Example: A sky diver has two chutes

● What is the chance that at least one opens assuming independence?

● Assuming independence doesn’t justify the assumption! Both chutes could fail 
because of the same rare event e.g., freezing rain.
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𝐴 : event that the main chute doesn’t open ℙ 𝐴 = 0.02
𝐵 : event that the backup doesn’t open ℙ 𝐵 = 0.1



Agenda

• Review: Conditional Probability, Bayes

• Law of Total Probability (w/ Bayes)

• Chain Rule

• Independence

• Conditional Independence

• Assumptions and Correlation

• Bonus: Monty Hall Problem
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Monty Hall Problem
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Suppose you’re on a game show, and you’re given the choice of three doors. 
Behind one of the doors is a car, behind the other, goats. You pick a door, 
say number 1, and the host, who knows what’s behind the doors, opens 
another door, say number 3, which has a goat. He says to you, “Do you want 
to switch to door number 2?” Is it to your advantage to switch your choice 
of doors?

Assumptions
● The player is equally likely to pick each of the three doors.
● After the player picks a door, the host must open a different door with a goat 

behind it and offer the player the choice of staying with the original door or 
switching.

● If the host has a choice of which door to open, then he is equally likely to select 
each of them.



Should you switch or stay?
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