CSE 312

Foundations of Computing II

Aleks Jovcic

Welcome to summer quarter!

https://courses.cs.washington.edu/312/22su

Agenda

Course Overview

- Introductions
- Course Content
- Administrivia

Intro to Counting

- Sum Rule
- Product Rule
- Permutations
- Complimentary Counting

Your Staff!

Aleks Jovcic (he/him)

Just graduated with my bachelor's degree in Computer Science!

Jinghua Sun (Head TA) (she/her)

Elliott Zackrone (he/him)

Arya GJ (he/him)

Xinyue Chen (she/her)

Lukshya Ganjoo (he/him)

Abbey Regan (she/her)

Course Content

- Probability and Statistics for Computer Scientists
 - Foundation of several CS Topics
 - Establishing the fundamentals

- Context for the math
 - Technical applications (coding)
 - Real-world implications and assumptions

Practice for higher-level courses

Course Roadmap

- Counting (Combinatorics) ← we are here
 - Week 1-2
- Probability
 - Week 2-3
- Random Variables
 - Week 4-5
- Multiple Random Variables
 - Week 6
- The Normal Random Variable
 - Week 7
- Statistics
 - Week 8

Syllabus Overview

Found in full on course website

CSE 312

Foundations of Computing II

Lecture 1: Counting I

Aleks Jovcic

Slide Credit: Based on Anna Karlin's slides for 312 21au

Today: Counting

Prerequisite: Set Theory

A set S is an unordered collection of objects with no duplicates. They can be finite or infinite. $S \subseteq A$

The cardinality of \underline{S} is denoted |S|, which is the number of elements in the set.

 $S = \{3, 18, 20091\}$ **Examples:** $S = \{apple, orange\}$ $S = \{ \bigstar, \blacktriangle \}$ S = all positive integers

We are interested in counting the number of elements with a certain given property. $\subseteq \bigcup$

S

"How many ways are there to assign 7 TAs to 5 sections, such that each section is assigned to two TAs, and no TA is assigned to more than two sections?"

"How many integer solutions $(x, y, z) \in \mathbb{Z}^3$ does the equation $x^3 + y^3 = z^3$ have?"

Generally: Question boils down to computing cardinality |S| of some given set S.

(Discrete) Probability and Counting are Twin Brothers

"What is the probability that a random student from CSE312 has black hair?"

students with black hair #students

shutterstock.com • 579768892

Sum Rule

If elements of your set can be from

- Either one of *n* options,
- OR one of m options with NO overlap with the previous n, then the number of possible outcomes is

$$n+m$$

Counting lunches

6+8=148+6=14

If your lunch can be either one soup (6 choices) or one salad (8 choices),

how many possible lunches?

Product Rule: If each element is constructed by a sequential process where there are

- n_1 choices for the first step,
- n_2 choices for the second step (given the first choice), ..., and
- n_k choices for the k^{th} step (given the previous choices),

then the total number of possibilities is $n_1 \times n_2 \times \cdots \times n_k$

Product Rule: In a sequential process, if there are

- n_1 choices for the first step,
- n_2 choices for the second step (given the first choice), ..., and
- n_k choices for the k^{th} step (given the previous choices),

then the total number of possibilities is $n_1 \times n_2 \times \cdots \times n_k$

Example – Strings

How many binary strings of length $\frac{1}{2}$ over the alphabet $\{0,1\}$?

• E.g., 0 ··· 0, 1 ··· 1, 0 ··· 01, ...

Example – Strings

How many strings of length 5 over the alphabet $\{A, B, C, ..., Z\}$ are there? $AAAAA \times YABT$

• E.g., AZURE, BINGO, TANGO, STEVE, SARAH, ...

Example – Power set

Definition. The **power set** of *S* is

$$2^{\mathcal{S}} \stackrel{\text{def}}{=} \{X : X \subseteq \mathcal{S}\}$$

Example.

$$S = \{ \bigstar, \blacktriangle \}$$
 $2^{\{ \bigstar, \blacktriangle \}} = \{ \emptyset, \{ \bigstar \}, \{ \bigstar \}, \{ \bigstar, \blacktriangle \} \}$

$$S = \emptyset \qquad 2^{\emptyset} = \{\emptyset\}$$

...

How many different subsets of S are there if |S| = n?

Example – Power set – number of subsets of S

$$S = \{e_1, e_2, e_3, \cdots, e_n\}$$

What is the number of subsets of S, i.e., $|2^{S}|$?

Example – ATMs and Pin codes

- How many 4 –digit pin codes are there?
- Each digit one of {0, 1, 2,..., 9}

possible first digits

possible second digits

possible third digits

possible
fourth digits

possible pins

Example – ATMs and Pin codes – Stronger Pins

- How many 10-digit pin codes are there with no repeating digit?
- Each digit one of {0, 1, 2,..., 9}; must use each digit exactly once

Permutations

"How many ways to order n distinct objects?"

Answer =
$$n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$$

Definition. The factorial function is

$$n! = n \times (n-1) \times \cdots \times 2 \times 1$$

Read as "in factorial"

Note: 0! = 1

Huge: Grows exponentially in *n*

Example – ATMs and Pin codes – Tricky Pins

- How many 10-digit pin codes with at least one digit repeated once?
- Examples: 1111111111, 1234567889, 1353483595

Example - ATMs and Pin codes - Tricky Pins

• How many 10-digit pin codes with at least one digit repeated once?

Complementary Counting

Let U be a set and S a subset of interest

Let U \S denote the set difference (the part of U that is not in

S)

Then
$$|U \setminus S| = |U| - |S|$$

And $|S| = |U| - |U/S|$

Quick Summary

Sum Rule

If you can choose from

- Either one of n options,
- OR one of m options with NO overlap with the previous n, then the number of possible outcomes of the experiment is n+m

Product Rule

In a sequential process, if there are

- n_1 choices for the first step,
- n_2 choices for the second step (given the first choice), ..., and
- n_k choices for the k^{th} step (given the previous choices),

then the total number of outcomes is $n_1 \times n_2 \times \cdots \times n_k$

Quick Summary

- Complementary Counting:
- Instead of counting |S|, count |U| |U/S|
- Permutations: How many ways to uniquely order n distinct elements?
 - Product rule → n!

The first concept check (CC) will be out at 2PM and is due 11:30AM Friday

The concept checks are meant to help you immediately reinforce what is learned in each lecture.

Students from previous quarters found them really useful!

Pset 1 is out now! Due Friday, July 1st at 11:59pm PST

First problem set is a bit shorter than future ones.

Includes some prerequisite review and will onboard you with Python.