
CSE 312: Foundations of Computing II
Section 8: Maximum Likelihood and more

1. Review of Main Concepts
(a) Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

(b) Likelihood: Let x1, . . . xn be iid realizations from probability mass function pX(x ; θ) (if X discrete) or
density fX(x ; θ) (if X continuous), where θ is a parameter (or a vector of parameters). We define the
likelihood function to be the probability of seeing the data.
If X is discrete:

L (x1, . . . , xn | θ) =
n∏

i=1

pX (xi | θ)

If X is continuous:
L (x1, . . . , xn | θ) =

n∏
i=1

fX (xi | θ)

(c) Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter
(or vector of parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE = argmax
θ

L (x1, . . . , xn | θ) = argmax
θ

lnL (x1, . . . , xn | θ)

(d) Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since
the logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly
the same as the value that maximizes the log-likelihood.
If X is discrete:

lnL (x1, . . . , xn | θ) =
n∑

i=1

ln pX (xi | θ)

If X is continuous:
lnL (x1, . . . , xn | θ) =

n∑
i=1

ln fX (xi | θ)

(e) Bias: The bias of an estimator θ̂ for a true parameter θ is defined as Bias
(
θ̂, θ

)
= E[θ̂]−θ. An estimator

θ̂ of θ is unbiased iff Bias
(
θ̂, θ

)
= 0, or equivalently E[θ̂] = θ.

(f) Steps to find the maximum likelihood estimator, θ̂:

(a) Find the likelihood and log-likelihood of the data.
(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, θ̂.
(c) Take the second derivative and show that θ̂ indeed is a maximizer, that ∂2L

∂θ2
< 0 at θ̂. Also ensure

that it is the global maximizer: check points of non-differentiability and boundary values.

(g) Markov’s Inequality: Let X be a non-negative random variable, and α > 0. Then, P (X ≥ α) ≤ E[X]
α .

(h) Chebyshev’s Inequality (we did not cover this in class): Suppose Y is a random variable with E[Y ] = µ

and Var(Y ) = σ2. Then, for any α > 0, P (|Y − µ| ≥ α) ≤ σ2

α2 .
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(i) Chernoff Bound (for the Binomial): (We will not cover this in class, but it’s good to know.) It’s
stronger than the Chebyshev bound. Suppose X ∼ Binomial(n, p) and µ = np. Then, for any 0 < δ < 1,

• P (X ≥ (1 + δ)µ) ≤ e−
δ2µ
3

• P (X ≤ (1− δ)µ) ≤ e−
δ2µ
2

2. 312 Grades
Suppose Professor Karlin loses everyones grades for 312 and decides to make it up by assigning grades randomly
according to the following probability distribution, and hoping the n students wont notice: give an A with
probability 0.5, a B with probability θ, a C with probability 2θ, and an F with probability 0.5−3θ. Each student
is assigned a grade independently. Let xA be the number of people who received an A, xB the number of people
who received a B, etc, where xA + xB + xC + xF = n. Find the MLE for θ.

3. A Red Poisson
Suppose that x1, . . . , xn are i.i.d. samples from a Poisson(θ) random variable, where θ is unknown. Find the
MLE of θ.

4. Independent Shreds, You Say?
(Covered in class.) You are given 100 independent samples x1, x2, . . . , x100 from Bernoulli(θ), where θ is
unknown. (Each sample is either a 0 or a 1). These 100 samples sum to 30. You would like to estimate the
distribution’s parameter θ. Give all answers to 3 significant digits.

(a) What is the maximum likelihood estimator θ̂ of θ?

(b) Is θ̂ an unbiased estimator of θ?

5. Y Me?
Let y1, y2, ...yn be i.i.d. samples of a random variable with density function

fY (y|θ) =
1

2θ
exp(−|y|

θ
)

.
Find the MLE for θ in terms of |yi| and n.

6. Laplace MLE
Suppose x1, . . . , x2n are iid realizations from the Laplace density (double exponential density): for x ∈ R,

fX (x | θ) = 1

2
e−|x−θ|

Find the MLE for θ. For this problem, you need not verify that the MLE is indeed a maximizer. You may find
the sign function useful:

sgn (x) =

{
+1, x ≥ 0
−1, x < 0
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7. What if we lose ?
[This is practice with earlier material] Suppose 59 percent of voters favor Proposition 600. Use the Normal
approximation to estimate the probability that a random sample of 100 voters will contain:

(a) at most 50 in favor. Mention any assumption that you make.

(b) more than 100 voters in favor or fewer than 0 voters in favor (again based on this normal approximation).
Will the probability be non zero?

8. Law of Total Probability Review
(a) (Discrete version) Suppose we flip a coin with probability U of heads, where U is equally likely to be one

of ΩU = {0, 1
n ,

2
n , ..., 1} (notice this set has size n + 1). Let H be the event that the coin comes up

heads. What is P(H)?

(b) (Continuous version) Now suppose U ∼ Uniform(0,1) has the continuous uniform distribution over the
interval [0, 1]. What is P(H)?

(c) Let’s generalize the previous result we just used. Suppose E is an event, and X is a continuous random
variable with density function fX(x). Write an expression for P(E), conditioning on X.

9. MAP Estimation*
(Optional: depending on if we have covered this in lecture; Read sections 7.4 and 7.5, if you’re interested) Let
x1, ..., xn be iid realizations from a distribution with common pmf pX(x; θ) where θ is an unknown but fixed
parameter. Let’s call the event {X1 = x1, ..., Xn = xn} = D for data. You may wonder why in MLE, we seek
to maximize the likelihood L(D | θ), rather than P(θ | D). This is because it doesn’t make sense to compute
P(θ), since θ is fixed. However, in Maximum a Posteriori (MAP) estimation, we assume the parameter
is a random variable (denoted Θ), and attempt to maximize πΘ(θ | D), where πΘ is the pmf or pdf of Θ,
depending on whether Θ is continuous or discrete. Using Bayes Theorem, we get πΘ(θ | D) = L(D|θ)πΘ(θ)

L(D) .
To maximize the LHS with respect to θ, we may ignore the denominator on the RHS since it is constant with
respect to θ. Hence MAP seeks to maximize πΘ(θ | D) ∝ L(D | θ)πΘ(θ). We call πΘ(θ) the prior distribution
on the parameter Θ, and πΘ(θ | D) the posterior distribution on Θ. MLE maximizes the likelihood, and MAP
maximizes the product of the likelihood and the prior. If the prior is uniform, we will see that MAP is the same
as MLE (since πΘ(θ) won’t depend on θ).

(a) Suppose we have the samples x1 = 0, x2 = 0, x3 = 1, x4 = 1, x5 = 0 from the Bernoulli(θ) distribution,
where θ is unknown. Assume θ is unrestricted; that is, θ ∈ (0, 1). What is θ̂MLE?

(b) Suppose we impose that θ ∈ {0.2, 0.5, 0.7}. What is θ̂MLE?

(c) Assume Θ is restricted as in part (b) (now a random variable for MAP). Assume a (discrete) prior of
πΘ(0.2) = 0.1, πΘ(0.5) = 0.01, πΘ(0.7) = 0.89. What is θ̂MAP ?

(d) Show that we can make the MAP estimator whatever we want it to be. That is, for each of the three
candidate parameters above, find a prior distribution on Θ such that the MAP estimate is that parameter.

(e) Typically, for the Bernoulli/Binomial distribution, if we use MAP, we want to be able to get any value
θ ∈ (0, 1) (not just ones in a finite set such as {0.2, 0.5, 0.7}). So we assign θ the Beta distribution with
parameters α, β > 0 and density πΘ(θ) = cθα−1(1−θ)β−1 for θ ∈ (0, 1) and 0 otherwise as a prior, where c
is a normalizing constant which has a complicated form. The mode of a W ∼ Beta(α, β) random variable
is given as α−1

α+β−2 (the mode is the value with the highest density = argmaxw∈(0,1) fW (w)). Suppose
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x1, ..., xn are iid samples from the Bernoulli distribution with unknown parameter, where
∑n

i=1 xi = k.
Recall that the MLE is k/n. Show that the posterior πΘ(θ | D) has a Beta(k + α, n − k + β) density,
and find the MAP estimator for Θ. (Hint: use the mode given). Notice that Beta(1, 1) ≡ Uniform(0, 1).
If we had this prior, how would the MLE and MAP estimates compare?

(f) Since the posterior is also a Beta distribution, we call the Beta distribution the conjugate prior to the
Bernoulli/Binomial distribution. Intepret what the parameters α, β mean as to the prior.

(g) Which do you think is “better", MLE or MAP?
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