CSE 312 Foundations of Computing II

Lecture 26: Differential Privacy

Setting

Setting – Data Release

Example – Linkage Attack

- The Commonwealth of Massachusetts Group Insurance Commission (GIC) releases 135,000 records of patient encounters, each with 100 attributes
 - <u>Relevant attributes removed</u>, but ZIP, <u>birth date</u>, <u>gender</u> available
 - Considered "safe" practice
- Allowed identification of medical records of William Weld, governor of MA at that time
 - He was the only man in his zip code with his birth date ...

+More attacks! (cf. Netflix grand prize challenge!)

One way out? Differential Privacy

- A formal definition of privacy
 - Satisfied in systems deployed by Google, Uber, Apple, ...
- Used by 2020 census
- Idea: Any information-related risk to a person should not change significantly as a result of that person's information being included, or not, in the analysis.
 - Even with side information!

More Realistic Privacy Goal

Setting – Formal

Setting – Mechanism

27,0

Definition. A mechanism M is \widehat{g} -differentially private if for all subsets $T \subseteq \mathbb{R}$, and for all databases $\overline{x}, \overline{x}'$ which differ at exactly one entry, $P(M(\overline{x}) \in T) \leq \widehat{g} \cdot P(M(\overline{x}') \in T)$

Dwork, McSherry, Nissim, Smith, '06

Think:
$$\epsilon = \frac{1}{100}$$
 or $\epsilon = \frac{1}{10}$

 $e^{\epsilon} \approx 1 + \epsilon$ for small ϵ

Example – Counting Queries

• DB is a vector $\vec{x} = (x_1, \dots, x_n)$ where $x_1, \dots, x_n \in \{0,1\}^{\mathcal{U}(\mathcal{Z}) = 0}$

 $M(\vec{x}) = q(\vec{x}) = \overline{Z} \times i$

- $-x_i = 1$ if individual *i* has disease
- $-x_i = 0$ means patient does not have disease or patient data wasn't recorded.
- Query: $q(\overline{x}) = \sum_{i=1}^{n} x_i$ $\overline{x}' = (\overline{x})$

Here: \vec{x} and \vec{x}' differ at one entry means they differ at one single coordinate, e.g., $x_i = 1$ and $x'_i = 0$

A solution – Laplacian Noise

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$: • Return $M(\vec{x}) = \sum_{i=1}^n x_i + Y$ "Laplacian mechanism with parameter ϵ "

Here, *Y* follows a Laplace distribution with parameter ϵ

$$f_Y(y) = \frac{f_{\varepsilon}}{2} e^{-\epsilon |y|}$$
$$\mathbb{E}[Y] = 0$$
$$Var(Y) = \frac{2}{\epsilon^2}$$

Better Solution – Laplacian Noise

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

• Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y$

"Laplacian mechanism with parameter ϵ "

Here, *Y* follows a Laplace distribution with parameter *e*

$$f_Y(y) = \frac{\epsilon}{2} e^{-\epsilon|y|}$$

Key property: For all
$$y, \Delta$$

$$\int f_{Y}(y) = e^{\epsilon \Delta}$$

Laplacian Mechanism – Privacy $f(\tilde{z}) = \frac{1}{\tilde{z}} \kappa_i(+ \frac{1}{2})$

Theorem. The Laplacian Mechanism with parameter ϵ satisfies ϵ -differential privacy

Show: $\forall \vec{x}, \vec{x}'$ differ at one entry, [a, b] $P(M(\vec{x}) \in [a,b]) \leq e^{\epsilon} \cdot P(M(\vec{x}') \in [a,b])$ $\Delta = \sum_{i=1}^{n} x_i \quad |\Delta| \leq 1 \quad -S = -S'$ $P(M(\vec{x}) \in [a,b]) = P([\vec{x} + [Y] \in [a,b]) = \int_{a-s}^{b-s} f_Y(y) dy = \int_a^b f_Y(y'-s) dy'$ $\Lambda = S' - S$ -S = -S' + 1 $= \int_{a}^{b} f_{Y}(y - s') dy \leq e^{\epsilon \Delta} \int_{a}^{b} f_{Y}(y - s') dy \leq e^{\epsilon} \int_{a}^{b} f_{Y}(y - s') dy$ $= e^{\epsilon} P(M(\vec{x}') \in [a, b])$

How Accurate is Laplacian Mechanism?

Let's look at $\sum_{i=1}^{n} x_i + Y$ • $\mathbb{E}[\sum_{i=1}^{n} x_i + Y] = \sum_{i=1}^{n} x_i + \mathbb{E}[Y] = \sum_{i=1}^{n} x_i$ • $\operatorname{Var}(\sum_{i=1}^{n} x_i + Y) = \operatorname{Var}(Y) = \frac{2}{2}$

This is accurate enough for large enough ϵ !

Differential Privacy – What else can we compute?

- Statistics: counts, mean, median, histograms, boxplots, etc.
- Machine learning: classification, regression, clustering, distribution learning, etc.

•••

Differential Privacy – Nice Properties

• **Group privacy:** If *M* is ϵ -differentially private, then for all $T \subseteq \mathbb{R}$, and <u>for all</u> databases \vec{x}, \vec{x}' which differ at (at most) *k* entries,

 $P(M(\vec{x}) \in T) \le e^{k\epsilon} P(M(\vec{x}') \in T)$

- Composition: If we apply two *ε*-DP mechanisms to data, combined output is 2*ε*-DP.
 - How much can we allow ϵ to grow? (So-called "privacy budget.")
- **Post-processing:** Postprocessing does not decrease privacy.

Local Differential Privacy

Laplacian Mechanism

What if we don't trust aggregator?

Solution: Add noise <u>locally</u>!

Example – Randomize Response

Mechanism *M* taking input $\vec{x} = (x_1, \dots, x_n)$: 5 X • For all i = 1, ..., n: $-y_i = x_i$ w/ probability $\frac{1}{2} + \alpha$, and $y_i = 1 - x_i$ w/ probability $\frac{1}{2} - \alpha$. $-\widehat{x}_{i} = \frac{y_{i-\frac{1}{2}} + \alpha}{2\alpha}$ • Return $M(\vec{x}) = \sum_{i=1}^{n} \lambda_i$

S. L. Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965

Example – Randomize Response

For a given parameter α

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

- For all i = 1, ..., n:
 - $y_i = x_i$ w/ probability $\frac{1}{2} + \alpha$, and $y_i = 1 x_i$ w/ probability $\frac{1}{2} \alpha$.

$$- \hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$$

• Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$

Theorem. Randomized Response with parameter α satisfies ϵ -differential privacy, if $\alpha = \frac{e^{\epsilon}-1}{e^{\epsilon}+1}$.

Fact 1. $\mathbb{E}[M(\vec{x})] = \sum_{i=1}^{n} x_i$

Fact 2.
$$\operatorname{Var}(M(\vec{x})) \approx \frac{n}{\epsilon^2}$$

Differential Privacy – Challenges

- Accuracy vs. privacy: How do we choose ϵ ?
 - Practical applications tend to err in favor of accuracy.
 - See e.g. <u>https://arxiv.org/abs/1709.02753</u>
- Fairness: Differential privacy hides contribution of small groups, <u>by design</u>
 - How do we avoid excluding minorities?
 - Very hard problem!
- Ethics: Does differential privacy incentivize data collection?

Literature

- Cynthia Dwork and Aaron Roth. "The Algorithmic Foundations of Differential Privacy".
 - <u>https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf</u>
- <u>https://privacytools.seas.harvard.edu/</u>