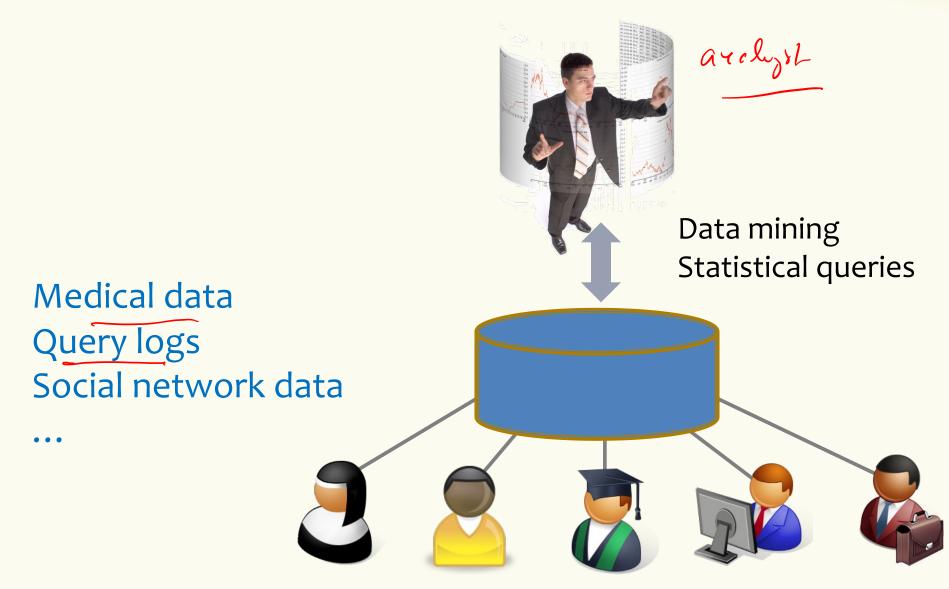
CSE 312

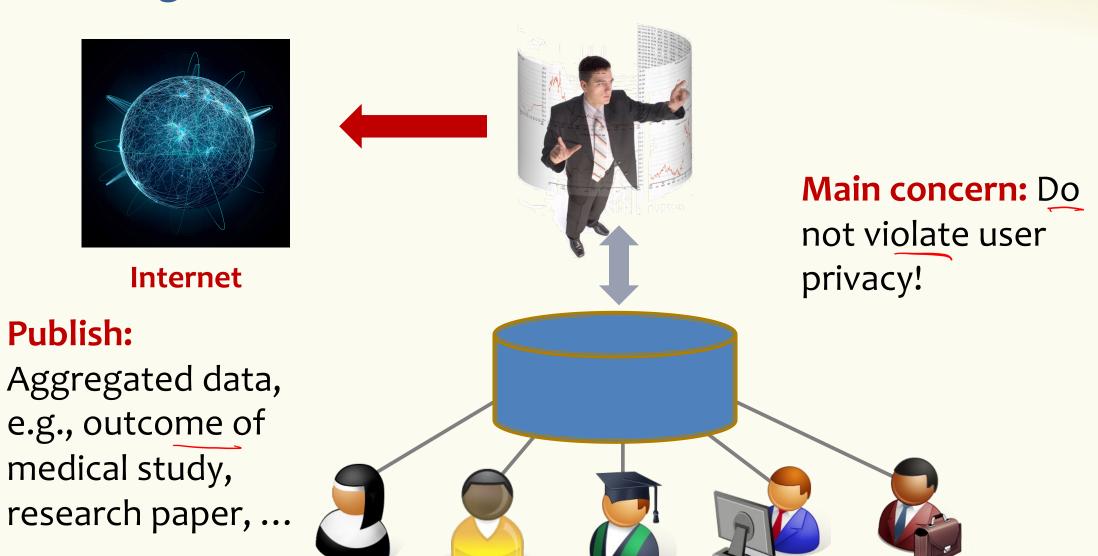
Foundations of Computing II

Lecture 26: Differential Privacy

Setting



Setting – Data Release



Example – Linkage Attack

- The Commonwealth of Massachusetts Group Insurance Commission (GIC) releases 135,000 records of patient encounters, each with 100 attributes
 - Relevant attributes removed, but ZIP, birth date, gender available
 - Considered "safe" practice
- Public voter registration record
 - Contain, among others, name, address, ZIP, birth date, gender
- Allowed identification of medical records of William Weld, governor of MA at that time
 - He was the only man in his zip code with his birth date …
 - +More attacks! (cf. Netflix grand prize challenge!)

One way out? Differential Privacy

- A formal definition of privacy
 - Satisfied in systems deployed by Google, Uber, Apple, ...
- Used by 2020 census
- Idea: Any information-related risk to a person should not change significantly as a result of that person's information being included, or not, in the analysis.
 - Even with side information!

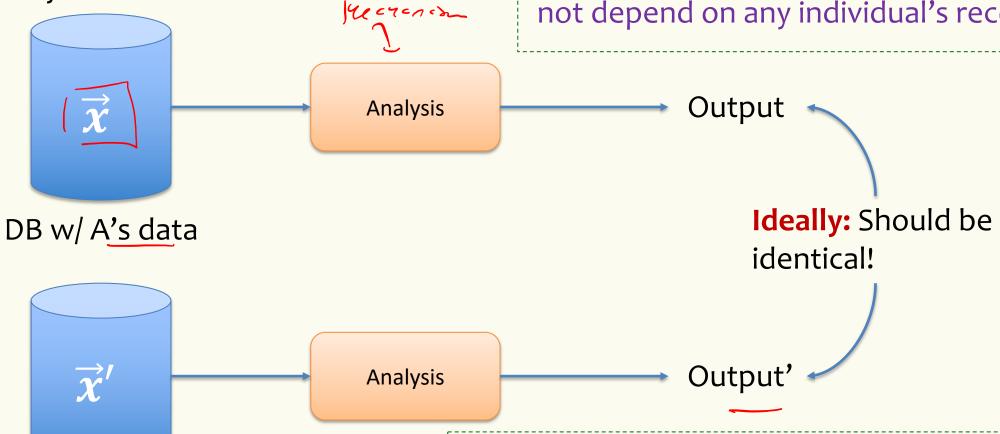
Ideal Individual's Privacy

DB w/o A's data

For every individual A whose record in DB

Very good for privacy.

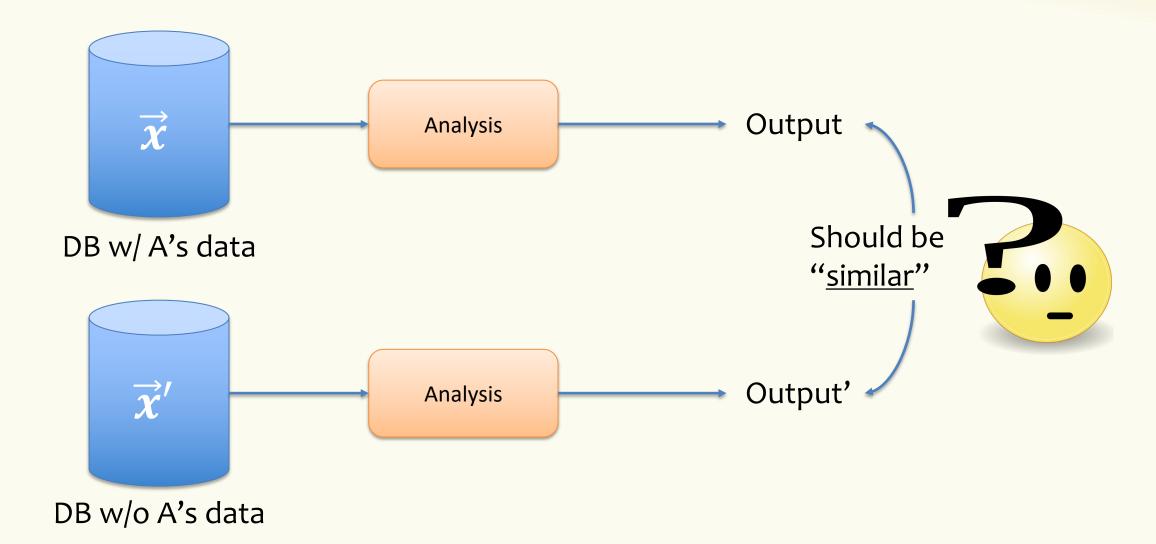
But the output would be **useless** as it does not depend on any individual's record!



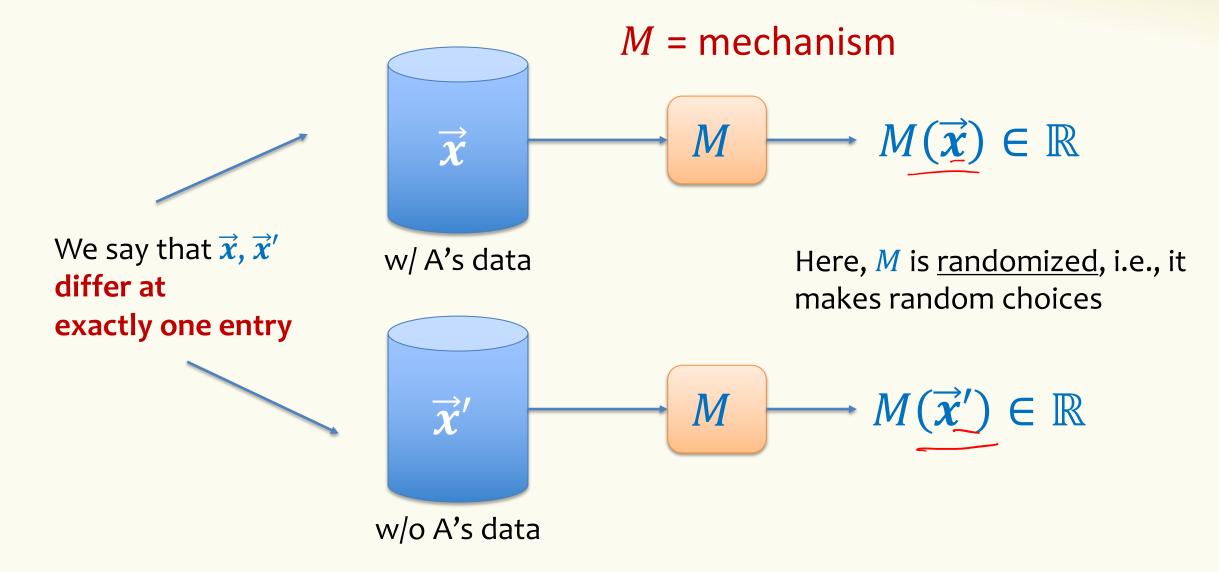
Common Theme:

- Tension / Balance between privacy & utility
- Privacy is not a 0 / 1 property.

More Realistic Privacy Goal



Setting – Formal



Setting – Mechanism

Definition. A mechanism M is ϵ -differentially private if for all subsets $T \subseteq \mathbb{R}$, and for all databases \vec{x}, \vec{x}' which differ at exactly one entry,

$$P(M(\vec{x}) \in T) \le e^{\epsilon} P(M(\vec{x}') \in T)$$

Dwork, McSherry, Nissim, Smith, '06

Think:
$$\epsilon = \frac{1}{100}$$
 or $\epsilon = \frac{1}{10}$

$$\sqrt{e^{\epsilon}} \approx 1 + \epsilon$$
 for small ϵ

Example – Counting Queries
$$X \rightarrow (7) \rightarrow (2) \times (2)$$

- DB is a vector $\vec{x} = (x_1, ..., x_n)$ where $x_1, ..., x_n \in \{0,1\}$
 - $-x_i = 1$ if individual *i* has disease
 - $-x_i = 0$ means patient does not have disease or patient data wasn't recorded.
- Query: $q(\vec{x}) = \sum_{i=1}^{n} x_i$

Here: \vec{x} and \vec{x}' differ at one entry means they differ at one single coordinate, e.g., $x_i = 1$ and $x'_i = 0$

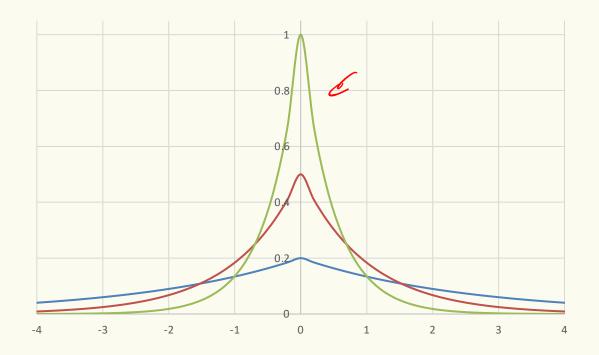
A solution – Laplacian Noise

Mechanism M taking input $\vec{x} = (x_1, ..., x_n)$:

• Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y$

"Laplacian mechanism with parameter ϵ "

Here, Y follows a Laplace distribution with parameter \subseteq



$$f_Y(y) = \frac{\epsilon}{2} e^{-\epsilon |y|}$$

$$\mathbb{E}[Y] = 0$$

$$Var(Y) = \frac{2}{\epsilon^2}$$

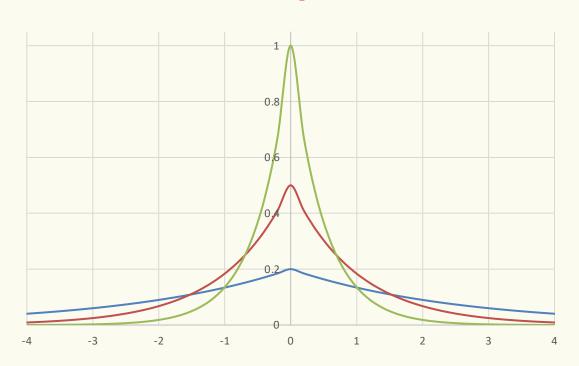
Better Solution – Laplacian Noise

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

• Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y$

"Laplacian mechanism with parameter ϵ "

Here, Y follows a Laplace distribution with parameter ϵ



$$f_Y(y) = \frac{\epsilon}{2} e^{-\epsilon|y|}$$

Key property: For all y, Δ

$$\frac{f_Y(y)}{f_Y(y+\Delta)} \le e^{\frac{1}{2}}$$

Laplacian Mechanism – Privacy

てん:ナイ こん:1-12

Theorem. The Laplacian Mechanism with parameter ϵ satisfies ϵ -differential privacy

Show: $\forall \vec{x}, \vec{x}'$ differ at one entry, [a, b]

$$S' - S = A \qquad P(M(\vec{x}) \in [a, b]) \le e^{\epsilon} \cdot P(M(\vec{x}') \in [a, b])$$

$$\Delta = \sum_{i=1}^{n} x'_{i} \qquad |\Delta| \le 1$$

$$P(M(\vec{x}) \in [a, b]) = P(s + Y \in [a, b]) = \int_{a-s}^{b-s} f_{Y}(y) dy = \int_{a}^{b} f_{Y}(y' - |s) dy'$$

$$= \int_{a}^{b} f_{Y}(y - s' + \Delta) dy \le e^{\epsilon \Delta} \int_{a}^{b} f_{Y}(y - s') dy \le e^{\epsilon} \int_{a}^{b} f_{Y}(y - s') dy$$

$$= e^{\epsilon} P(M(\vec{x}') \in [a, b])$$

How Accurate is Laplacian Mechanism?

Let's look at $\sum_{i=1}^{n} x_i + Y$

•
$$\mathbb{E}\left[\sum_{i=1}^{n} x_i + |\overline{Y}\right] = \left[\sum_{i=1}^{n} x_i + \mathbb{E}[Y]\right] = \sum_{i=1}^{n} x_i$$

•
$$Var(\sum_{i=1}^{n} x_i + Y) = Var(\underline{Y}) = \frac{2}{\epsilon^2}$$

This is accurate enough for large enough ϵ !

Differential Privacy – What else can we compute?

- Statistics: counts, mean, median, histograms, boxplots, etc.
- Machine learning: classification, regression, clustering, distribution learning, etc.

•

Differential Privacy – Nice Properties

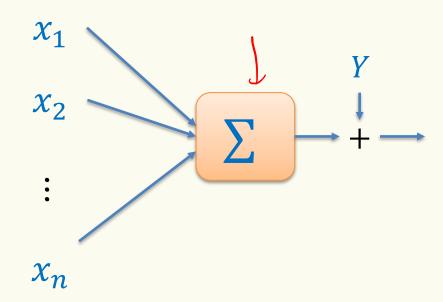
• Group privacy: If M is ϵ -differentially private, then for all $T \subseteq \mathbb{R}$, and for all databases \vec{x}, \vec{x}' which differ at (at most) k entries,

$$P(M(\vec{x}) \in T) \le e^{k\epsilon} P(M(\vec{x}') \in T)$$

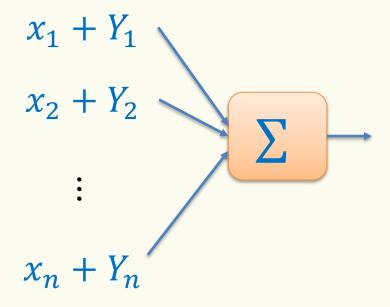
- Composition: If we apply two ϵ -DP mechanisms to data, combined output is 2ϵ -DP.
 - How much can we allow ϵ to grow? (So-called "privacy budget.")
- Post-processing: Postprocessing does not decrease privacy.

Local Differential Privacy

Laplacian Mechanism



What if we don't trust aggregator?



Solution: Add noise <u>locally!</u>

Example – Randomize Response

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

- For all i = 1, ..., n:
 - $-y_i = x_i$ w/ probability $\frac{1}{2} + \alpha$, and $y_i = 1 x_i$ w/ probability $\frac{1}{2} \alpha$.

$$-|\widehat{x}| = |\widehat{y}| - \frac{1}{2} + \alpha$$

• Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$

S. L. Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965

Example – Randomize Response

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

- For all i = 1, ..., n:
 - $-y_i=x_i$ w/ probability $\frac{1}{2}+\alpha$, and $y_i=1-x_i$ w/ probability $\frac{1}{2}-\alpha$.

$$- \hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$$

• Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$

Theorem. Randomized Response with parameter α satisfies ϵ -differential privacy, if $\alpha = \frac{e^{\epsilon}-1}{e^{\epsilon}+1}$.

Fact 1.
$$\mathbb{E}[M(\vec{x})] = \sum_{i=1}^{n} x_i$$

Fact 2.
$$Var(M(\vec{x})) \approx \frac{m!}{\epsilon^2}$$

Differential Privacy – Challenges

- Accuracy vs. privacy: How do we choose ?
 - Practical applications tend to err in favor of accuracy.
 - See e.g. https://arxiv.org/abs/1709.02753
- Fairness: Differential privacy hides contribution of small groups, by design
 - How do we avoid excluding minorities?
 - Very hard problem!
- Ethics: Does differential privacy incentivize data collection?

Literature

- Cynthia Dwork and Aaron Roth. "The Algorithmic Foundations of Differential Privacy".
 - https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
- https://privacytools.seas.harvard.edu/