CSE 312

Foundations of Computing II

Lecture 20: Tail Bounds

Review Joint PMFs and Joint Range

Definition. Let *X* and *Y* be discrete random variables. The **Joint PMF** of *X* and *Y* is

$$p_{X,Y}(a,b) = P(X = a, Y = b)$$

Definition. The joint range of $p_{X,Y}$ is

$$\Omega_{X,Y} = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega_X \times \Omega_Y$$

Note that

$$\sum_{(s,t)\in\Omega_{XY}} p_{X,Y}(s,t) = 1$$

Review Continuous distributions on $\mathbb{R} \times \mathbb{R}$

Definition. The **joint probability density function (PDF)** of continuous random variables X and Y is a function $f_{X,Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

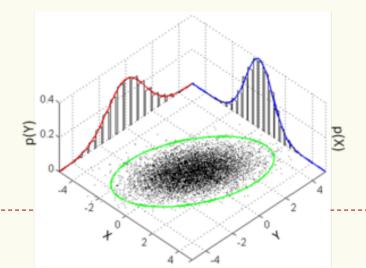
- $f_{X,Y}(x,y) \ge 0$ for all $x,y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$

for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_A f_{X,Y}(x, y) dxdy$

The (marginal) PDFs f_X and f_Y are given by

$$- f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$$

$$- f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}x$$



Review Law of Total Expectation $F(X|A) = \sum_{x} x \cdot P(X=x|A)$

Law of Total Expectation (event version). Let X be a random variable and let events A_1, \dots, A_n partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid A_i] \cdot P(A_i)$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X \mid Y = y] \cdot P(Y = y)$$

Agenda

Covariance

- Markov's Inequality
- Chebyshev's Inequality

Covariance: How correlated are *X* and *Y*?

Recall that if X and Y are independent, $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Definition: The **covariance** of random variables X and Y, $Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Unlike variance, covariance can be positive or negative. It has has value 0 if the random variables are independent.

If
$$X, X$$
 are indep => $C_{-}(X, Y) = C$
 $C_{-}(X, Y) = C_{-}(X, Y) = C_{-}(X, Y)$

$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Two Covariance examples:

Suppose
$$X \sim \text{Bernoulli}(p)$$

$$\mathcal{L}_{X} = \{c_{1}\} \\
(\mathcal{L}_{X}) = \mathcal{L}_{X}^{2}\}$$
If random variable $Y = X$ then $X = (\mathcal{L}_{X})^{2} = Var(X) = p(1-p)$

If random variable $Z = -X$ then
$$Cov(X, Z) = \mathbb{E}[XZ] - \mathbb{E}[X] \cdot \mathbb{E}[Z] \\
= \mathbb{E}[\mathcal{L}_{X}^{2}] - \mathbb{E}[X] \cdot \mathbb{E}[\mathcal{L}_{X}] \\
= -\mathbb{E}[X^{2}] + \mathbb{E}[X]^{2} = -Var(X) = -p(1-p)$$

Agenda

- Covariance
- Markov's Inequality
- Chebyshev's Inequality

Tail Bounds (Idea)

Bounding the probability that a random variable is far from its mean. Usually statements of the form:

$$P(X \ge a) \le b$$

$$P(|X - \mathbb{E}[X]| \ge a) \le b$$

$$Smill$$

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly

Markov's Inequality

Theorem. Let X be a random variable taking only non-negative values. Then, for any t > 0,

$$P(X \ge t) \le \frac{\mathbb{E}[X]}{t}$$

(Alternative form) For any $k \geq 1$,

$$P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$$

Incredibly simplistic – only requires that the random variable is non-negative and only needs you to know <u>expectation</u>. You don't need to know **anything else** about the distribution of X.

Markov's Inequality - Proof I

Theorem. Let X be a (discrete) random variable taking only non-negative values. Then, for any t > 0,

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}$$

$$\mathbb{E}[X] = \sum_{x} x \cdot P(X = x)$$

$$= \sum_{x \ge t} x \cdot P(X = x) + \sum_{x < t} x \cdot P(X = x)$$

$$\geq \sum_{x \ge t} x \cdot P(X = x)$$

 ≥ 0 because $x \geq 0$ whenever $P(X = x) \geq 0$ (X takes only non-negative values)

Follows by re-arranging terms

Markov's Inequality - Proof II

Theorem. Let X be a (continuous) random variable taking only non-negative values. Then, for any t > 0,

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$$

$$\mathbb{E}[X] = \int_0^\infty x \cdot f_X(x) \, \mathrm{d}x$$

$$= \int_{t}^{\infty} x \cdot f_{X}(x) dx + \int_{0}^{t} x \cdot f_{X}(x) dx$$

$$\geq \int_{t}^{\infty} x \cdot f_{X}(x) \, \mathrm{d}x$$

$$\geq \int_{t}^{\infty} t \cdot f_{X}(x) \, \mathrm{d}x = t \cdot \int_{t}^{\infty} f_{X}(x) \, \mathrm{d}x = t \cdot P(X \geq t)$$

so
$$P(X \ge t) \le \mathbb{E}[X]/t$$
 as before

Example – Geometric Random Variable

Let X be geometric RV with parameter p

$$P(X = i) = (1 - p)^{i-1}p$$

$$\mathbb{E}[X] = \frac{1}{p}$$

"X is the number of times Alice needs to flip a biased coin until she sees heads, if heads occurs with probability p?

What is the probability that $X \ge 2\mathbb{E}[X] = 2/p$?

Markov's inequality: $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$

Can we do better?

Example

Suppose that the average number of ads you will see on a website is 25. Give an upper bound on the probability of seeing a website with 75 or more ads. θ F(x) = 7.5

```
Poll: pollev.com/stefanotessaro617

a. 0 \le p < 0.25

b. 0.25 \le p < 0.5

c. 0.5 \le p < 0.75

d. 0.75 \le p

e. Unable to compute
```

```
E(X) = 25
P(X = 75) \leq P
\frac{1}{2}
\frac{2}{2}
\frac{2}{2}
```

$P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$

Example

Suppose that the average number of ads you will see on a website is 25. Give an upper bound on the probability of seeing a website with 20 or more ads.

Poll: pollev.com/stefanotessaro617

a. $0 \le p < 0.25$ b. $0.25 \le p < 0.5$ c. $0.5 \le p < 0.75$ d. $0.75 \le p$ e. Unable to compute

Brain Break

Agenda

- Covariance
- Markov's Inequality
- Chebyshev's Inequality

Chebyshev's Inequality

Theorem. Let X be a random variable. Then, for any t > 0,

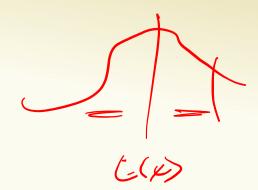
$$P(|X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}$$

Proof: Define
$$Z = X - \mathbb{E}[X]$$

$$P(|Z| \ge t) = P(Z^2 \ge t^2) \le \frac{\mathbb{E}[Z^2]}{t^2} = \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{t^2} = \frac{\text{Var}(X)}{t^2}$$

$$|Z| \ge t \text{ iff } Z^2 \ge t^2 \qquad \text{Markov's inequality } (Z^2 \ge 0)$$

Example – Geometric Random Variable



Let X be geometric RV with parameter p

$$P(X = i) = (1 - p)^{i-1}p$$
 $\mathbb{E}[X] = \frac{1}{p}$

 $Var(X) \neq \frac{1-p}{p^2}$

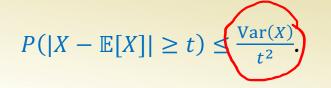
What is the probability that $X \ge 2\mathbb{E}(X) = 2/p$?

$$\underline{\mathsf{Markov:}}\,P(X\geq 2\mathbb{E}[X])\leq \frac{1}{2}$$

Chebyshev:
$$P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\text{Var}(X)}{\mathbb{E}[X]^2} = 1 - p$$

Better if $p > 1/2$ ©

Example



[(x] = Rs

Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 4. Give an upper bound on the probability of seeing a website with 30 or more ads. Vacable = 66

Poll: pollev.com/stefanotessaro617 a. $0 \le p < 0.25$

b. $0.25 \le p < 0.5$

c. $0.5 \le p < 0.75$

d. $0.75 \le p$

e. Unable to compute

 $P(X_{3c}) = \int_{5}^{5}$ $= P(X - E(X_{3c}) = \int_{5}^{5}$ $= P((X - E(X_{3c}) = 16)$ $= \frac{16}{25}$

Chebyshev's Inequality – Repeated Experiments

"How many times does Alice need to flip a biased coin until she sees heads n times, if heads occurs with probability p?

X = # of flips until n times "heads"

 $X_i = \#$ of flips between (i - 1)-st and i-th "heads"

$$X = \sum_{i=1}^{n} X_i$$

Note: X_1, \dots, X_n are independent and geometric with parameter p

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p} \qquad \text{Var}(X) = \sum_{i=1}^{n} \text{Var}(X_i) = \frac{n(1-p)}{p^2}$$

Chebyshev's Inequality – Coin Flips

"How many times does Alice need to flip a biased coin until she sees heads n times, if heads occurs with probability p?

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p} \qquad \text{Var}(X) = \sum_{i=1}^{n} \text{Var}(X_i) = \frac{n(1-p)}{p^2}$$

What is the probability that $X \ge 2\mathbb{E}[X] = 2n/p$?

$$\underline{\mathsf{Markov:}}\,P(X\geq 2\mathbb{E}[X])\leq \frac{1}{2}$$

Chebyshev:
$$P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^2} = \frac{1-p}{n}$$

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

 Very often loose upper-bounds are okay when designing for the worst case

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bound.