
CSE 312

Foundations of Computing II
Lecture 18: Continuity Correction & Distinct Elements
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Review CLT
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Theorem. (Central Limit Theorem) 𝑋!, … , 𝑋" i.i.d. with mean 𝜇 and 
variance 𝜎#. Let 𝑌" =

$!%⋯%$"'"(
) "

. Then,  

lim
"→+

𝑌" → 𝒩(0,1)

One main application: 
Use Normal Distribution to Approximate 𝑌!

No need to understand 𝑌! !!



Agenda

• Continuity correction
• Application: Counting distinct elements
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Example – 𝑌! is binomial  

We flip 𝑛 independent coins, heads with probability 𝑝 = 0.75. 
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𝑋 = # heads 

ℙ(𝑋 ≤ 0.7𝑛)

𝑛 exact 𝒩 𝝁, 𝝈𝟐
approx

10 0.4744072 0.357500327

20 0.38282735 0.302788308

50 0.25191886 0.207108089

100 0.14954105 0.124106539

200 0.06247223 0.051235217

1000 0.00019359 0.000130365

𝜇 = 𝔼 𝑋 = 0.75𝑛 𝜎& = Var 𝑋 = 𝑝 1 − 𝑝 𝑛 = 0.1875𝑛

We understand binomial, so we can see how well approximation works 



Example – Naive Approximation

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?
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Exact. ℙ 𝑋 ∈ 20,21 =
40
20

+
40
21

1
2

01

≈ 0.2448

Approx.

ℙ 20 ≤ 𝑋 ≤ 21 = Φ
20 − 20

10
≤
𝑋 − 20
10

≤
21 − 20

10

≈ Φ 0 ≤
𝑋 − 20
10

≤ 0.32

= Φ 0.32 − Φ 0 ≈ 0.1241
😢

𝑋 = # heads 𝜇 = 𝔼 𝑋 = 0.5𝑛 = 20 𝜎& = Var 𝑋 = 0.25𝑛 = 10



Example – Even Worse Approximation

Fair coin flipped (independently) 40 times. Probability of 20 heads?
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Exact. ℙ 𝑋 = 20 =
40
20

1
2

01

≈ 0.1254

Approx. ℙ 20 ≤ 𝑋 ≤ 20 = 0 😢



Solution – Continuity Correction 

Round to next integer!
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To estimate probability that discrete RV lands in (integer) interval {𝑎, … , 𝑏}, compute 
probability continuous approximation lands in interval [𝑎 − '

&
, 𝑏 + '

&
]



Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?
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Exact. ℙ 𝑋 ∈ 20,21 =
40
20

+
40
21

1
2

01

≈ 0.2448

Approx.

ℙ 19.5 ≤ 𝑋 ≤ 21.5 = Φ
19.5 − 20

10
≤
𝑋 − 20
10

≤
21.5 − 20

10

≈ Φ −0.16 ≤
𝑋 − 20
10

≤ 0.47

= Φ −0.16 − Φ 0.47 ≈ 0.2452
👍

𝑋 = # heads 𝜇 = 𝔼 𝑋 = 0.5𝑛 = 20 𝜎& = Var 𝑋 = 0.25𝑛 = 10



Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 heads?
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Exact. ℙ 𝑋 = 20 =
40
20

1
2

01

≈ 0.1254

Approx. ℙ 19.5 ≤ 𝑋 ≤ 20.5 = Φ
19.5 − 20

10
≤
𝑋 − 20
10

≤
20.5 − 20

10

≈ Φ −0.16 ≤
𝑋 − 20
10

≤ 0.16

= Φ −0.16 − Φ 0.16 ≈ 0.1272



Agenda

• Continuity correction
• Application: Counting distinct elements
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Data mining – Stream Model

• In many data mining situations, data often not known ahead of time.
– Examples:   Google queries,  Twitter or Facebook status updates,  YouTube video 

views

• Think of the data as an infinite stream
• Input elements (e.g. Google queries) enter/arrive one at a time.
– We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream 
using a limited amount of memory?



Stream Model – Problem Setup

Input: sequence (aka.  “stream”) of 𝑁 elements 𝑥", 𝑥#, … , 𝑥$
from a known universe 𝑈 (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to 
right pass, where:
– Elements processed in real time
– Can’t store the full data ⇒ use minimal amount of storage while 

maintaining working “summary”



What can we compute?

Some functions are easy:
– Min
– Max 
– Sum
– Average

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4



Today: Counting distinct elements

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4

Application

You are the content manager at YouTube, and you 
are trying to figure out the distinct view count for a 
video. How do we do that?

Note: A person can view their favorite videos 
several times, but they only count as 1 distinct view!



Other applications

• IP packet streams: How many distinct IP addresses or IP flows 
(source+destination IP, port, protocol)
– Anomaly detection, traffic monitoring

• Search: How many distinct search queries on Google on a certain 
topic yesterday

• Web services: how many distinct users (cookies) searched/browsed a 
certain term/item
– Advertising, marketing trends, etc.



Counting distinct elements

Want to compute number of distinct IDs in the stream.
• Naïve solution: As the data stream comes in, store all distinct IDs 

in a hash table. 
• Space requirement: Ω(𝑚)

YouTube Scenario: 𝑚 is huge!

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4
𝑁 = # of IDs in the stream = 11,    𝑚 = # of distinct IDs in the stream = 5  



Counting distinct elements

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4
𝑁 = # of IDs in the stream = 11,    𝑚 = # of distinct IDs in the stream = 5  



0 1

0 1
x

0 1
x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4

If 𝑌!, ⋯ , 𝑌2~ Unif 0,1 (i.i.d.) where do we expect the points to end up?

What is some intuition for this?

“Evenly spread out”

Detour – I.I.D. Uniforms



Detour – I.I.D. Uniforms
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If 𝑌!, ⋯ , 𝑌2~ Unif 0,1 (i.i.d.) where do we expect the points to end up?

𝑚 = 1
0 1

x

𝑌' has expected value 1/2
… but probably isn’t very close to the middle

𝑚 = 2
0 1

x x

… and 𝑌& is more likely to be in the bigger gap



Detour – Min of I.I.D. Uniforms
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If 𝑌!, ⋯ , 𝑌2~ Unif 0,1 (i.i.d.) where do we expect the points to end up?

e.g., what is 𝔼[min 𝑌!, ⋯ , 𝑌2 ]? 

CDF: Observe that min 𝑌!, ⋯ , 𝑌2 ≥ 𝑦 if and only if 𝑌! ≥ 𝑦,… , 𝑌2 ≥ 𝑦

𝑃 min 𝑌!, ⋯ , 𝑌2 ≥ 𝑦 = 𝑃(𝑌! ≥ 𝑦,… , 𝑌2 ≥ 𝑦)

(Similar to Section 6)

= 𝑃 𝑌! ≥ 𝑦 ⋯𝑃(𝑌2 ≥ 𝑦) (Independence)

= 1 − 𝑦 2

𝑦 ∈ [0,1]

⇒ 𝑃 min 𝑌!, ⋯ , 𝑌2 ≤ 𝑦 = 1 − 1 − 𝑦 2



Detour – Min of I.I.D. Uniforms
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Useful fact. For any random variable 𝑌 taking 
non-negative values

𝔼 𝑌 = M
1

+
𝑃 𝑌 ≥ 𝑦 d𝑦

Proof (Not covered)

= C
()*)+),

𝑓- 𝑥 = F
(

,
F
*

,
𝑓- 𝑥 d𝑥 d𝑦 = F

(

,
𝑃 𝑌 ≥ 𝑦 d𝑦

𝔼 𝑌 = F
(

,
𝑥 ⋅ 𝑓- 𝑥 d𝑥 = F

(

,
F
(

+
1d𝑦 ⋅ 𝑓- 𝑥 d𝑥 = F

(

,
F
(

+
𝑓- 𝑥 d𝑦 d𝑥



Detour – Min of I.I.D. Uniforms
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𝑌', ⋯ , 𝑌.~ Unif 0,1 (i.i.d.) 

𝑌 = min 𝑌', ⋯ , 𝑌.

Useful fact. For any random variable 𝑌 taking 
non-negative values

𝔼 𝑌 = M
1

+
𝑃 𝑌 ≥ 𝑦 d𝑦

𝔼 𝑌 = 6
%

&
𝑃 𝑌 ≥ 𝑦 d𝑦 = 6

%

"
1 − 𝑦 'd𝑦

= =−
1

𝑚 + 1
1 − 𝑦 '("

%

"

= 0 − −
1

𝑚 + 1
=

1
𝑚 + 1



Detour – Min of I.I.D. Uniforms

0 1

0 1

0 1

x

x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4

𝔼[min 𝑌!, ⋯ , 𝑌0 ] =
!

0%!
= !

3

𝔼[min 𝑌! ] =
!

!%!
= !

#

𝔼[min 𝑌!, 𝑌# ] =
!

#%!
= !

4

In general,  𝔼[min 𝑌!, ⋯ , 𝑌2 ] = !
2%!

If 𝑌!, ⋯ , 𝑌2~ Unif 0,1 (iid) where do we expect the points to end up?



Distinct Elements – Hashing into [𝟎, 𝟏]
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Hash function ℎ: 𝑈 → [0,1]
Assumption: For all 𝑥 ∈ 𝑈,  ℎ 𝑥 ~ Unif 0,1 and mutually independent

𝑥! = 5 𝑥# = 2 𝑥4 = 27 𝑥0 = 35 𝑥3 = 4

ℎ 5 ℎ 2 ℎ 27 ℎ 35 ℎ 4

5 distinct elements 

→ 5 i.i.d. RVs ℎ 𝑥! , … , ℎ 𝑥3 ~ Unif 0,1

→ 𝔼 min ℎ 𝑥! , … , ℎ 𝑥3 = !
3%!

= !
5



Distinct Elements – Hashing into [𝟎, 𝟏]
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𝑥! = 5 𝑥# = 2 𝑥4 = 27 𝑥0 = 5 𝑥3 = 4

ℎ 5 ℎ 2 ℎ 27 h 5 ℎ 4

4 distinct elements 

⇒ 4 i.i.d. RVs ℎ 𝑥! , ℎ 𝑥# , ℎ 𝑥4 , ℎ 𝑥3 ~ Unif 0,1 and ℎ 𝑥! = ℎ 𝑥0

⇒𝔼 min ℎ 𝑥! , … , ℎ 𝑥3 = 𝔼 min ℎ 𝑥! , ℎ 𝑥# , ℎ 𝑥4 , ℎ 𝑥3 = !
0%!

Hash function ℎ: 𝑈 → [0,1]
Assumption: For all 𝑥 ∈ 𝑈,  ℎ 𝑥 ~ Unif 0,1 and mutually independent



Distinct Elements – Hashing into [𝟎, 𝟏]
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𝑥", 𝑥#, … , 𝑥$ contains 𝑚 distinct elements

𝔼 min ℎ(𝑥!), … , ℎ(𝑥6) =
1

𝑚 + 1

Hash function ℎ: 𝑈 → [0,1]
Assumption: For all 𝑥 ∈ 𝑈,  ℎ 𝑥 ~ Unif 0,1 and mutually independent

ℎ(𝑥"), ℎ 𝑥# , … , ℎ(𝑥$) contains 𝑚 i.i.d. rvs ~ Unif 0,1
and 𝑁 −𝑚 repeats

𝑚 =
1

𝔼 min ℎ(𝑥!), … , ℎ(𝑥6)
− 1



The MinHash Algorithm – Idea

1. Compute val = min{ℎ(𝑥"), … , ℎ(𝑥$)}
2. Assume that val ≈ 𝔼 min ℎ(𝑥"), … , ℎ(𝑥$)

3. Output round "
)*+
− 1
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𝑚 =
1

𝔼 min ℎ(𝑥!), … , ℎ(𝑥6)
− 1



The MinHash Algorithm – Implementation
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Memory cost = just remember val
(with sufficient precision)

Algorithm MinHash(𝑥", 𝑥#, … , 𝑥$)
val ← ∞
for 𝑖 = 1 to𝑁 do

val ← min{val, ℎ(𝑥,)}

return round "
)*+
− 1



MinHash Example

Stream:    13,      25,       19,     25,       19,      19

Hashes: 0.51,  0.26,  0.79,  0.26,  0.79,  0.79

Poll:  pollev.com/stefanotessaro617
a. 1
b. 3
c. 5
d. No idea

What does 
MinHash return?



MinHash Example II

Stream:    11,     34,     89,     11,      89,     23

Hashes:  0.5,  0.21,  0.94,   0.5,  0.94,   0.1

Output is "
%."
− 1 = 9 Clearly, not a very good answer!

Not unlikely: 𝑃 ℎ 𝑥 < 0.1 = 0.1



The MinHash Algorithm – Problem
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Algorithm MinHash(𝑥", 𝑥#, … , 𝑥$)
val ← ∞
for 𝑖 = 1 to𝑁 do

val ← min{val, ℎ(𝑥,)}

return round "
)*+
− 1

val = min{ℎ(𝑥!), … , ℎ(𝑥")}

But, val is not 𝔼[val]!     
How far is val from 𝔼[val]? 

𝔼[val] =
1

𝑚 + 1

Var(val) ≈
1

𝑚 + 1 #



How can we reduce the variance?

Idea: Repetition to reduce variance! 
Use 𝑘 independent hash functions ℎ!, ℎ#, ⋯ ℎK

Algorithm MinHash(𝑥!, 𝑥#, … , 𝑥6)
val!, … , valL ← ∞
for 𝑖 = 1 to𝑁 do

val! ← min{val!, ℎ!(𝑥M)} , … , valL ← min{valK , ℎK(𝑥M)}

val ←
1
𝑘
`
MN!

K

valO

return round !
PQR
− 1

Var val =
1
𝑘

1
𝑚 + 1 #



MinHash and Estimating # of Distinct Elements in Practice

• MinHash in practice:
– One also stores the element that has the minimum hash value for 

each of the 𝑘 hash functions
• Then, just given separate MinHashes for sets 𝐴 and 𝐵, can also estimate
–what fraction of 𝐴 ∪ 𝐵 is in 𝐴 ∩ 𝐵; i.e.,  how similar 𝐴 and 𝐵 are

• Another randomized data structure for distinct elements in practice:
– HyperLoglog - even more space efficient but doesn’t have 

the set combination properties of MinHash
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