CSE 312
Foundations of Computing Il

Lecture 18: Continuity Correction & Distinct Elements
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Theorem. (Central Limit Theorem) X, ..., X}, i.i.d. with mean u and

variance o°. Let ¥, = @/ég@ Thlen,

lim Y, - N (0,1)
n—00

One main application:
Use Normal Distribution to Approximate Y,
No need to understand Y, !!



Agenda

* Continuity correction @
* Application: Counting distinct elements



Example - Y,, is binomial

We understand binomial, so we can see how well approximation works

We flip n independent coins, heads with probability p = 0.75.

X=#heads u=EX)=0.75n ¢ =Var(X) =p(1—p)n=0.1875n

- i

N(u o?) /L/((/ufc‘?S—,/

0.4744072

P(X <0.7n) 20 0.38282735
50 0.25191886

L 100 0.14954105

WAL o 200 0.06247223
1000 0.00019359

approx 1A
pPp o= o /Y;?j “)
S 75005R)

0. 302788308
0.207108089
0.124106539
0.051235217
0.000130365



Example — Naive Approximation

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?

P(X € {20,21}) = [(40) + (40)] (1)40 0.2448
Exact. , = 20 1 5 ~ 0.

—_—
\

Approx. X =#heads pu=EX)=0.5n=20 o*=Var(X)=0.25n=10

— ———————

IP(ZOSXSZl)zd)( @ X\/_ZO 21(@@)
zcb(osx\/_l_(z)ososz) @

= ®(0.32) — d(0) =|0.1241




Example — Even Worse Approximation

Fair coin flipped (independently) 40 times. Probability of 20 heads?

40\ /1\*° <
Exact. P(X =20) = ( )(_) ~ Q-/1254
20/ \2
/ﬂ A Z(‘ 5 |
Approx. P(20<X<20)=0 &

/

C

A (Z= |0)



PMF/Density

Solution - Continuity Correction

Round to next integer!

0.20
$\

0.10

::_J:___

0.00

To estimate probability that discrete RV lands in (integer) interval {q, ..., b}, compute
probability continuous approximation lands in interval [a — % b + %]




Example — Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?
1,40

Exact. P(X € {20,21}) = [(:g) + (421(1))] (E) ~ ().2448

Approx. X=#heads u=EX)=05n=20 o¢°=Var(X)=0.25n=10

19.5—20<X—20<21.5—20)
V10 ~ V10 V10

P(19.5 < X < 21.5) = cp(

- /

= ®(—0.16) — ®(0.47) ~[0.2452




Example — Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 heads?

14-0

40
Exact. P(X = 20) = (20) (E) ~ (0.1254

19.5 — 20 <X—20 5 20.5 —20)
V10 ~ W10 410

V10
= ®(—0.16) — ®(0.16) ~[0.1272

Approx. [P(19.5<X <20.5) = CI)(

0
~ O (—0.16 < < 0.16)




Agenda

* Continuity correction
* Application: Counting distinct elements <
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Data mining - Stream Model

* In many data mining situations, data often not known ahead of time.

— Examples: Google queries, Twitter or Facebook status updates, YouTube video
views

* Think of the data as an infinite stream
* Input elements (e.g. Google queries) enter/arrive one at a time.

— We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream
using a limited amount of memory?



Stream Model - Problem Setup

Input: sequence (aka. “stream’”) of N elements x1, x5, ..., Xy

from a known universe@ (e.g., 8-byte integers). — = -

Goal: perform a computation on the input, in a single left to
right pass, where:

— Elements processed in real time

— Can’t store the full data = use minimal amount of storage while
maintaining working “summary”



What can we compute?

32’ 12’ 14’ 32) 77 12? 32) 7’ 32’ 12’

. Vm/Q Xl — L =X L -5 /I
Some functions are easy: <

— Min
— Max
— Sum
— Average



Today: Counting distinct elements

32, 12, 14, 32, /, 12, 32, /7, 32, 12,
Application
You are the content manager at YouTube, and you

are trying to figure out the distinct view count for a
video. How do we do that?

Note: A person can view their favorite videos
several times, but they only count as 1 distinct view!



Other applications

* |IP packet streams: How many distinct IP addresses or IP flows
(source+destination IP, port, protocol)

— Anomaly detection, traffic monitoring

* Search: How many distinct search queries on Google on a certain
topic yesterday

* Web services: how many distinct users (cookies) searched/browsed a
certain term/item

— Advertising, marketing trends, etc.



Counting distinct elements

4

/7 'd
33, 12) 14, 32, 4, 12, 32, 7, 32, 12,

N =#of IDs in the stream =11, m = # of distinct IDs in the stream =5

—

Want to compute number of distinct IDs in the stream.

* Naive solution: As the data stream comes in, store all distinct IDs
in a hash table.

* Space requirement: QQ(m)

YouTube Scenario: m is huge!



Counting distinct elements

32’ 127 14’ 32) 77 12? 32) 7’ 32’ 12’

N =#of IDs in the stream =11, m = # of distinct IDs in the stream =5

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?




Detour - L.I.D. Uniforms ( @ 7

IfY;, -, Y,,~ Unif(0,1) (i.i.d.) where do we expect the points to end up?

“Evenly spread out”

m=1 X

o) 1
m= 2 X X

o) 1
m =4 X X X X

o) 1

What is some intuition for this?



Detour - I.I.D. Uniforms

IfY;, -, Y,,~ Unif(0,1) (i.i.d.) where do we expect the points to end up?
m=1 X 1

o) 1

Y; has expected value 1/2
... but probably isn’t very close to the middle

... and Y, is more likely to be in the bigger gap

m= 2 X X

19



Detour - Min of I.I.D. Uniforms %
C Z /

IfY;,-,Y,,~ Unif(0,1) (i.i.d.) where do we expect the points to end up?
e.g., what is ]E[mm{Yl, Yo 32

CDF: Observe that min{Y;, -+ m} > @n‘ and only if i2y,..,Ym=2y
(Similar to Section 6)
P(mintl, -, Yin} 2 y) = P(Y; 2 y, . y)
@E [0,1] = P(Yl > y) P(Y > vy) (Independence)
=1 =y™

@ :P(min{yl' »Ym}S}’)=1—(1—Y)m 20



Detour — Min of I.I.D. Uniforms

Useful fact. For any random variable Y taking
- non-negative values

Proof (Not covered)

E[Y] = jooox'fy(x) dx = foo" (joxl dY> fr(x) dx = jooojoxfy(x) dy dx

o CE jooo jyoofyu) dx dy = jooom > y) dy

O<y<x<oo




Yy, -, Y~ Unif(0,1) (i.i.d.)
Y = min{yli R’ Ym}

Detour — Min of L.I.D. Uniforms

Useful fact. For any random variable Y taking
- non-negative values

E[Y] = f P(Y > y)dy = j (1 - y)™dy
0 0
C

1 (1 ym+1 —O—( 1 )_ 1
m+ 1 v—g 6>_ m+1/ m+1
{ 2

2



Detour — Min of L.I.D. Uniforms
IfY;, -, Y,,~ Unif(0,1) (iid) where do we expect the points to end up?

In general, E[min(Yy, -, Y¥p)] = —

m+1
E[min(¥;)] = — = -
m=1 X
"E[min(¥;,Y,)] = — =+ 1
m=2 X X
° E[min(Y;, -, Y,)] = =2 1
m =4 X X X X




Distinct Elements — Hashing into [0, 1]

————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

‘Hash function h: U - [0,1] |
Assumption: For all x € U, h(x) ~ Unif(0,1) and mutually independent

X1 =5 X, = 2 X3 = 27 X4 = 35 Xz = 4

h(5) h(2) h(27) h(35) h(4)

5 distinct elements
— 5 i.i.d. RVs h(x,), ..., h(xs) ~ Unif(0,1)
— E[minth(x,), ..., h(xs5)}] =

O\Ir—\

5+1
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Distinct Elements — Hashing into [0, 1]

————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

‘Hash function h: U - [0,1]
Assumption: For all x € U, h(x) ~ Unif(0,1) and mutually mdependent

X1 =5 Xy, = 2 X3 = 27 X4 =5 Xz = 4

h(5) h(2) h(27) h(5) h(4)
4 distinct elements
= 4 i.i.d. RVs h(xy), h(xy), h(x3), h(xs) ~ Unif(0,1) and h(x;) = h(x4)

= E[min{h(xy), ..., h(xs)}] = E[min{h(xy), h(x;), h(x3), h(xs)}] = — <

4+1 TS

25



Distinct Elements — Hashing into [0, 1]

————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

‘Hash function h: U - [0,1]
Assumption: For all x € U, h(x) ~ Unif(0,1) and mutually mdependent

X1,%X5, ..., Xy contains m distinct elements

!

h(x,),h(x;), ..., h(xy) contains mi.i.d. rvs ~ Unif(0,1)
l and N — m repeats
1

. 1 B
E[min{h(x,), ... RO = =7 4= m = e S ol

26




The MinHash Algorithm - Idea

1

1. Compute val = min{h(xy), ..., h(xy)}

2. Assume that val = E|min{h(x,), ...

3. Output round (— — 1)

val

= E[min{h(x,), ..., h(xy)}] -
,h(xy) 3

Y i i o~
» ' (.

27



The MinHash Algorithm - Implementation

Algorithm MinHash (x4, x5, ..., Xy)

val « oo \
fori = 1to N do Memory cost = just remember val

/ (with sufficient precision)
val « min{val, h(x;)}

return round (L — 1)

val

28



L
MinHash Example veok ( vl )/

A, L~ Fa e S §/c.
Stream: 13, 25, 19, 25, 19, 19
Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79 Mt 2 CLoC
= U

TN N — S ey

What does E é (\L
MinHash return? . 5 -
d Noidea ¢



MinHash Example Il

Stream: 11, 34, 89, 11, &89, 23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

.1
Output is T 1=9 Clearly, not a very good answer!

Not unlikely: P(h(x) < 0.1) = 0.1



The MinHash Algorithm - Problem

Algorithm MinHash (x4, x5, ..., Xy)
val « o

fori =1toN do

val « min{val, h(xi)}/
return round (L — 1)

val

Var(val) =

val = min{h(xy), ..., h(xy)} [E[val] = m;-l-l

But, val is not E[val]!
How far is val from [E|val]?

(m + 1)4

31



How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions h', h?, -+ h*

Algorithm MinHash(x, x,, ...

valy, ..., valy « o
fori = 1to N do

val; « min{vall, ht(x)}, ...

val « p Z val;

return round (— — 1)

val

'xN)

,val, < min{valy, h*(x;)}

1 1
Var(val) = K (m

1)?



MinHash and Estimating # of Distinct Elements in Practice

* MinHash in practice:

— One also stores the element that has the minimum hash value for
each of the k hash functions (4ns> [

: : : | ¢ :
* Then, just given separate MinHashes for sets A and B, chua?sé) estimate

—what fractionof A U Bisin A N B;i.e., how similar A and B are
* Another randomized data structure for distinct elements in practice:

— HyperLoglog - even more space efficient but doesn’t have
the set combination properties of MinHash

33



