Theorem. (Central Limit Theorem) \(X_1, \ldots, X_n \) i.i.d. with mean \(\mu \) and variance \(\sigma^2 \). Let \(Y_n = \frac{\sum_{i=1}^{n} X_i - n \mu}{\sigma \sqrt{n}} \). Then,

\[
\lim_{n \to \infty} Y_n \to \mathcal{N}(0,1)
\]

One main application:

Use Normal Distribution to Approximate \(Y_n \)

No need to understand \(Y_n \) !!
• Continuity correction
• Application: Counting distinct elements
Example – Y_n is binomial

We understand binomial, so we can see how well approximation works

We flip n independent coins, heads with probability $p = 0.75$. $X = \# \text{ heads} \quad \mu = \mathbb{E}(X) = 0.75n \quad \sigma^2 = \text{Var}(X) = p(1-p)n = 0.1875n$

<table>
<thead>
<tr>
<th>n</th>
<th>exact</th>
<th>$\mathcal{N}(\mu, \sigma^2)$ approx</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.4744072</td>
<td>0.357500327</td>
</tr>
<tr>
<td>20</td>
<td>0.38282735</td>
<td>0.302788308</td>
</tr>
<tr>
<td>50</td>
<td>0.25191886</td>
<td>0.207108089</td>
</tr>
<tr>
<td>100</td>
<td>0.14954105</td>
<td>0.124106539</td>
</tr>
<tr>
<td>200</td>
<td>0.06247223</td>
<td>0.051235217</td>
</tr>
<tr>
<td>1000</td>
<td>0.00019359</td>
<td>0.000130365</td>
</tr>
</tbody>
</table>
Example – Naive Approximation

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?

Exact. \[P(X \in \{20,21\}) = \left(\binom{40}{20} + \binom{40}{21} \right) \left(\frac{1}{2} \right)^{40} \approx 0.2448 \]

Approx. \[X = \# \text{ heads} \quad \mu = \mathbb{E}(X) = 0.5n = 20 \quad \sigma^2 = \text{Var}(X) = 0.25n = 10 \]

\[P(20 \leq X \leq 21) = \Phi \left(\frac{20 - 20}{\sqrt{10}} \leq \frac{X - 20}{\sqrt{10}} \leq \frac{21 - 20}{\sqrt{10}} \right) \]

\[\approx \Phi \left(0 \leq \frac{X - 20}{\sqrt{10}} \leq 0.32 \right) \]

\[= \Phi(0.32) - \Phi(0) \approx 0.1241 \]
Example – Even Worse Approximation

Fair coin flipped (independently) 40 times. Probability of 20 heads?

Exact. \[\mathbb{P}(X = 20) = \binom{40}{20} \left(\frac{1}{2}\right)^{40} \approx 0.1254 \]

Approx. \[\mathbb{P}(20 \leq X \leq 20) = 0 \]

\[\mathcal{N}(\infty, 10) \]
Solution – Continuity Correction

Round to next integer!

To estimate probability that discrete RV lands in (integer) interval $\{a, \ldots, b\}$, compute probability continuous approximation lands in interval $[a - \frac{1}{2}, b + \frac{1}{2}]$.
Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?

Exact. \[P(X \in \{20, 21\}) = \left[\binom{40}{20} + \binom{40}{21} \right] \left(\frac{1}{2} \right)^{40} \approx 0.2448 \]

Approx.

\[X = \# \text{ heads} \quad \mu = \mathbb{E}(X) = 0.5n = 20 \quad \sigma^2 = \text{Var}(X) = 0.25n = 10 \]

\[P(19.5 \leq X \leq 21.5) = \Phi \left(\frac{19.5 - 20}{\sqrt{10}} \leq \frac{X - 20}{\sqrt{10}} \leq \frac{21.5 - 20}{\sqrt{10}} \right) \]

\[\approx \Phi \left(-0.16 \leq \frac{X - 20}{\sqrt{10}} \leq 0.47 \right) \]

\[= \Phi(-0.16) - \Phi(0.47) \approx 0.2452 \]
Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 heads?

\[P(X = 20) = \binom{40}{20} (\frac{1}{2})^{40} \approx 0.1254 \]

Exact.

Approx.

\[P(19.5 \leq X \leq 20.5) = \Phi \left(\frac{19.5 - 20}{\sqrt{10}} \leq \frac{X - 20}{\sqrt{10}} \leq \frac{20.5 - 20}{\sqrt{10}} \right) \]

\[\approx \Phi \left(-0.16 \leq \frac{X - 20}{\sqrt{10}} \leq 0.16 \right) \]

\[= \Phi(-0.16) - \Phi(0.16) \approx 0.1272 \]
Agenda

• Continuity correction
• Application: Counting distinct elements
Data mining – Stream Model

• In many data mining situations, data often not known ahead of time.
 – Examples: Google queries, Twitter or Facebook status updates, YouTube video views

• Think of the data as an infinite stream

• Input elements (e.g. Google queries) enter/arrive one at a time.
 – We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?
Stream Model – Problem Setup

Input: sequence (aka. “stream”) of N elements x_1, x_2, \ldots, x_N from a known universe U (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to right pass, where:

- Elements processed in real time
- Can’t store the full data ⇒ use minimal amount of storage while maintaining working “summary”
What can we compute?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Some functions are easy:

– Min
– Max
– Sum
– Average
Today: Counting **distinct** elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application

You are the content manager at YouTube, and you are trying to figure out the **distinct** view count for a video. How do we do that?

Note: A person can view their favorite videos several times, but they only count as 1 **distinct** view!
Other applications

• IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
 – Anomaly detection, traffic monitoring
• Search: How many distinct search queries on Google on a certain topic yesterday
• Web services: how many distinct users (cookies) searched/browsed a certain term/item
 – Advertising, marketing trends, etc.
Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

$N = \# \text{ of IDs in the stream} = 11, \quad m = \# \text{ of distinct IDs in the stream} = 5$

Want to compute number of distinct IDs in the stream.

• **Naïve solution:** As the data stream comes in, store all distinct IDs in a hash table.

• **Space requirement:** $\Omega(m)$

YouTube Scenario: m is huge!
Counting distinct elements

\[32, \ 12, \ 14, \ 32, \ 7, \ 12, \ 32, \ 7, \ 32, \ 12, \ 4 \]

\[N = \# \text{ of IDs in the stream} = 11, \quad m = \# \text{ of distinct IDs in the stream} = 5 \]

Want to compute number of \textbf{distinct} IDs in the stream.

\textit{How to do this \textbf{without} storing all the elements?}
Detour – I.I.D. Uniforms

If $Y_1, \ldots, Y_m \sim \text{Unif}(0, 1)$ (i.i.d.) where do we expect the points to end up?

“Evenly spread out”

$m = 1$

0 \hspace{2cm} X \hspace{2cm} 1

$m = 2$

0 \hspace{2cm} X \hspace{0.5cm} X \hspace{2cm} 1

$m = 4$

0 \hspace{2cm} X \hspace{1cm} X \hspace{1cm} X \hspace{1cm} X \hspace{2cm} 1

What is some intuition for this?
Detour – I.I.D. Uniforms

If $Y_1, \ldots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

$m = 1$

\[m = 1 \]

Y_1 has expected value $1/2$

... but probably isn’t very close to the middle

$m = 2$

\[m = 2 \]

... and Y_2 is more likely to be in the bigger gap
Detour – Min of I.I.D. Uniforms

If $Y_1, \ldots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up? e.g., what is $\mathbb{E}[\min\{Y_1, \ldots, Y_m\}]$?

CDF: Observe that $\min\{Y_1, \ldots, Y_m\} \geq y$ if and only if $Y_1 \geq y, \ldots, Y_m \geq y$ (Similar to Section 6)

$$P(\min\{Y_1, \ldots, Y_m\} \geq y) = P(Y_1 \geq y, \ldots, Y_m \geq y)$$
$$= P(Y_1 \geq y) \cdots P(Y_m \geq y) \quad \text{(Independence)}$$
$$= (1 - y)^m$$

$\Rightarrow P(\min\{Y_1, \ldots, Y_m\} \leq y) = 1 - (1 - y)^m$
Detour – Min of I.I.D. Uniforms

Useful fact. For any random variable Y taking non-negative values

$$
\mathbb{E}[Y] = \int_0^{\infty} P(Y \geq y) \, dy
$$

Proof (Not covered)

$$
\mathbb{E}[Y] = \int_0^{\infty} x \cdot f_Y(x) \, dx = \int_0^{\infty} \left(\int_0^{\infty} 1 \, dy \right) \cdot f_Y(x) \, dx = \int_0^{\infty} \int_0^{\infty} f_Y(x) \, dy \, dx
$$

$$
= \int_{0}^{\infty} \int_{y}^{\infty} f_Y(x) \, dx \, dy = \int_0^{\infty} P(Y \geq y) \, dy
$$
Detour – Min of I.I.D. Uniforms

Useful fact. For any random variable Y taking non-negative values

\[
\mathbb{E}[Y] = \int_0^\infty P(Y \geq y)\,dy
\]

Using the given fact, we have

\[
\mathbb{E}[Y] = \int_0^\infty P(Y \geq y)\,dy = \int_0^1 (1 - y)^m\,dy
\]

\[
= -\frac{1}{m+1} (1 - y)^{m+1} \bigg|_0^1 = 0 - \left(-\frac{1}{m+1} \right) = \frac{1}{m+1}
\]

With \(Y_1, \ldots, Y_m \sim \text{Unif}(0,1) \) (i.i.d.),
\[Y = \min\{Y_1, \ldots, Y_m\} \]
Detour – Min of I.I.D. Uniforms

If $Y_1, \ldots, Y_m \sim \text{Unif}(0,1)$ (iid) where do we expect the points to end up?

In general, $\mathbb{E}[\min(Y_1, \ldots, Y_m)] = \frac{1}{m+1}$

For $m = 1$,

$\mathbb{E}[\min(Y_1)] = \frac{1}{1+1} = \frac{1}{2}$

For $m = 2$,

$\mathbb{E}[\min(Y_1, Y_2)] = \frac{1}{2+1} = \frac{1}{3}$

For $m = 4$,

$\mathbb{E}[\min(Y_1, \ldots, Y_4)] = \frac{1}{4+1} = \frac{1}{5}$
Distinct Elements – Hashing into \([0, 1]\)

Hash function \(h: U \rightarrow [0,1]\)

Assumption: For all \(x \in U\), \(h(x) \sim \text{Unif}(0,1)\) and mutually independent

\[
\begin{align*}
 x_1 &= 5 & x_2 &= 2 & x_3 &= 27 & x_4 &= 35 & x_5 &= 4 \\
 h(5) &= & h(2) &= & h(27) &= & h(35) &= & h(4) \\
\end{align*}
\]

5 distinct elements

\[
\rightarrow 5 \text{ i.i.d. RVs } h(x_1), \ldots, h(x_5) \sim \text{Unif}(0,1)
\]

\[
\rightarrow \mathbb{E}[\min\{h(x_1), \ldots, h(x_5)\}] = \frac{1}{5+1} = \frac{1}{6}
\]
Distinct Elements – Hashing into $[0, 1]$

Hash function $h: U \rightarrow [0,1]$

Assumption: For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

\[
x_1 = 5 \quad x_2 = 2 \quad x_3 = 27 \quad x_4 = 5 \quad x_5 = 4
\]

\[
h(5) \quad h(2) \quad h(27) \quad h(5) \quad h(4)
\]

4 distinct elements

⇒ 4 i.i.d. RVs $h(x_1), h(x_2), h(x_3), h(x_5) \sim \text{Unif}(0,1)$ and $h(x_1) = h(x_4)$

⇒ $\mathbb{E}[\min\{h(x_1), \ldots, h(x_5)\}] = \mathbb{E}[\min\{h(x_1), h(x_2), h(x_3), h(x_5)\}] = \frac{1}{4+1} \leq \frac{1}{5}$
Distinct Elements – Hashing into \([0, 1]\)

Hash function \(h: U \rightarrow [0,1]\)

Assumption: For all \(x \in U\), \(h(x) \sim \text{Unif}(0,1)\) and mutually independent

\[
x_1, x_2, \ldots, x_N \text{ contains } m \text{ distinct elements}
\]

\[
h(x_1), h(x_2), \ldots, h(x_N) \text{ contains } m \text{ i.i.d. rvs } \sim \text{Unif}(0,1)
\]

and \(N - m\) repeats

\[
\mathbb{E}[\min\{h(x_1), \ldots, h(x_N)\}] = \frac{1}{m + 1} \quad \leftrightarrow \quad m = \frac{1}{\mathbb{E}[\min\{h(x_1), \ldots, h(x_N)\}]} - 1
\]
The MinHash Algorithm – Idea

1. Compute \(\text{val} = \min\{h(x_1), \ldots, h(x_N)\} \)
2. Assume that \(\text{val} \approx \mathbb{E}[\min\{h(x_1), \ldots, h(x_N)\}] \)
3. Output \(\text{round}\left(\frac{1}{\text{val}} - 1\right) \)

\[
m = \frac{1}{\mathbb{E}[\min\{h(x_1), \ldots, h(x_N)\}]} - 1
\]
The MinHash Algorithm – Implementation

Algorithm **MinHash**(x_1, x_2, \ldots, x_N)

1. `val ← ∞`
2. **for** $i = 1$ **to** N **do**
 - `val ← min{val, h(x_i)}`
3. **return** `round(\frac{1}{val} - 1)`

Memory cost = just remember `val` (with sufficient precision)
MinHash Example

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

What does MinHash return?

Poll: pollev.com/stefanotessaro617
a. 1

b. 3

c. 5

d. No idea

\[\text{value} = \left(\frac{1}{\text{val}} - 1 \right) \]
MinHash Example II

Stream: 11, 34, 89, 11, 89, 23
Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

Output is $\frac{1}{0.1} - 1 = 9$

Clearly, not a very good answer!

Not unlikely: $P(h(x) < 0.1) = 0.1$
The MinHash Algorithm – Problem

Algorithm \textbf{MinHash}(x_1, x_2, \ldots, x_N)

val ← ∞

for \(i = 1 \) to \(N \) do

\[\text{val} \leftarrow \min\{\text{val}, h(x_i)\} \]

return round \(\left(\frac{1}{\text{val}} - 1 \right) \)

But, val is not \(\mathbb{E}[\text{val}] \)!

How far is val from \(\mathbb{E}[\text{val}] \)?

\[\mathbb{E}[\text{val}] = \frac{1}{m + 1} \]

\[\text{Var}(\text{val}) \approx \frac{1}{(m + 1)^2} \]
How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions h^1, h^2, \ldots, h^k

Algorithm $\text{MinHash}(x_1, x_2, \ldots, x_N)$

$val_1, \ldots, val_k \leftarrow \infty$

for $i = 1$ to N do

\[val_1 \leftarrow \min\{val_1, h^1(x_i)\}, \ldots, val_k \leftarrow \min\{val_k, h^k(x_i)\} \]

\[val \leftarrow \frac{1}{k} \sum_{i=1}^{k} val_i \]

return $\text{round}\left(\frac{1}{val} - 1\right)$

$$\text{Var}(val) = \frac{1}{k (m + 1)^2}$$
MinHash and Estimating # of Distinct Elements in Practice

• MinHash in practice:
 – One also stores the element that has the minimum hash value for each of the k hash functions
 • Then, just given separate MinHashes for sets A and B, can also estimate
 – what fraction of $A \cup B$ is in $A \cap B$; i.e., how similar A and B are

• Another randomized data structure for distinct elements in practice:
 – HyperLoglog - even more space efficient but doesn’t have the set combination properties of MinHash