
CSE 312

Foundations of Computing II

Lecture 13: Poisson Distribution
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Announcements

• Midterm info is posted

– Q&A session next Tuesday 4pm on Zoom 

– Practice midterm + other practice materials posted this 
Wednesday

• Office hour updates

– Prof. Tessaro: Office hour today already happened. No Friday OH.
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Zoo of Random Variables�������
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Agenda

• Poisson Distribution

• Approximate Binomial distribution using Poisson distribution 
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Preview: Poisson

Model: # events that occur in an hour

– Expect to see 3 events per hour (but will be random)

– The expected number of events in 0 hours, is 30
– Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

� = # of cars passing through a light in 1 hour
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Example – Model the process of cars passing through a light in 1 hour

� = # cars passing through a light in 1 hour. 
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1[�] = 3

1/)

Assume:   Occurrence of events on disjoint time intervals is independent

What should � be?
pollev.com/paulbeame028

A. 3/)
B. 3)
C. 3
D. 3/60

Divide hour into ) intervals of length 1/)Approximation idea:

This gives us ) independent intervals

Assume at most one car per interval

� = probability car arrives in an interval



Example – Model the process of cars passing through a light in 1 hour

� = # cars passing through a light in 1 hour.       Disjoint time intervals are independent.
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Know: 1[�] = 6 for some given 6 7 0
1 hour

Discrete version: ) intervals, each of length 1/) . 

In each interval, there is a car with probability � = 6/) (assume 8 1 car can pass by)

Each interval is Bernoulli: �9 = 1 if car in :th interval (0 otherwise). ���9 
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Don’t like discretization
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Poisson Distribution

• Suppose “events” happen, independently, at an average rate of 6 per 
unit time.

• Let � be the actual number of events happening in a given time 
unit. Then � is a Poisson r.v. with parameter 6 (denoted � ~ Poi�6�) 
and has distribution (PMF):
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� � 
 : 
 B > ⋅ >D
9!  

Several examples of “Poisson processes”:
• # of cars passing through a traffic light in 1 hour
• # of requests to web servers in an hour
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour

Siméon Denis Poisson

1781-1840

Assume 
fixed average rate



Probability Mass Function 
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� � = : = B > ⋅ >D
9!  

This Photo by Unknown Author is licensed 

under CC BY-NC



Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.
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Fact (Taylor series expansion):

BJ = G K9

:!
H

9<I

= B >B> = 1



Expectation
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Theorem. If � is a Poisson RV with parameter 6, then
1 � = 6
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Proof.

= 1 (see prior slides!)
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Variance
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Theorem. If � is a Poisson RV with parameter 6, then Var��� 
 6
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= 1[�] = 6 = 1
Similar to the previous proof 
Verify offline. 

Var � = 1[�!] − 1[�]!= 6! + 6 − 6! = 6

� � = : = B > ⋅ >D
9!  
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Poisson Random Variables
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Definition. A Poisson random variable � with parameter 6 ≥ 0 is such 
that for all : = 0,1,2,3 …,

� � = : = B > ⋅ >D
9!  

This Photo by Unknown Author is licensed 

under CC BY-NC

Poisson approximates binomial when:
) is very large, � is very small, and   6 =  )� is “moderate” 

e.g. () 7  20 and � <  0.05 ),  ( ) 7  100 and � <  0.1)

Formally, Binomial approaches Poisson in the limit as 
) →  ∞ (equivalently, � →  0) while holding )� =   6



Probability Mass Function – Convergence of Binomials
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From Binomial to Poisson
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Example -- Approximate Binomial Using Poisson 

Consider sending bit string over a network

• Send bit string of length ) =  104
• Probability of (independent) bit corruption is � =  10 V
What is probability that message arrives uncorrupted?

Using � ~ Poi(6 =  )� =  10W ⋅ 10 V =  0.01)

Using X ~ Bin(104, 10 V)
�(X = 0)  ≈  0.990049829
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� � = 0 = B > ⋅ 6I

0! = B I.I. ⋅ 0.01I

0! ≈ 0.990049834
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Sum of Independent Poisson RVs 
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Theorem. Let �~Poi(6.) and X~Poi(6!) such that 6 = 6. + 6!. 

Let \ = � + X.    For all ] = 0,1,2,3 …,

� \ = ] = B > ⋅ >^
_!  

More generally, let �.~Poi 6. , ⋯ , �,~Poi(6,) such that 6 = Σ969. 

Let \ = Σ9�9
� \ = ] = B > ⋅ >^

_!  



Sum of Independent Poisson RVs 
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Theorem. Let �~Poi(6.) and X~Poi(6!) such that 6 = 6. + 6!. 

Let \ = � + X. For all ] = 0,1,2,3 …,

� \ = ] = B > ⋅ >^
_!  

� \ = ] = ? 
1.  � \ = ] = ΣL<I_  � � = M, X = ] − M
2.  � \ = ] = ΣL<IH � � = M, X = ] − M
3.  � \ = ] = ΣL<I_ � X = ] − M|� = M  �(� = M)
4. � \ 
 ] 
 ΣL<I_ � X 
 ] � M|� 
 M

pollev.com/paulbeame028

A. All of them are right 
B. The first 3 are right 
C. Only 1 is right
D. Don’t know 



Proof
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_!

Law of total probability

Independence

Binomial 
Theorem
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General principle: 
• Events happen at an average rate 

of 6 per time unit 
• Number of events happening at a 

time unit � is distributed 
according to Poi(6) 

Definition. A Poisson random variable � with parameter 6 ≥ 0 is such 
that for all : = 0,1,2,3 …,

� � = : = B > ⋅ >D
9!  

• Poisson approximates Binomial when ) is large, 
� is small, and )� is moderate

• Sum of independent Poisson is still a Poisson

Poisson Random Variables



Next

• Continuous Random Variables

• Probability Density Function 

• Cumulative Density Function
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Often we want to model experiments where the outcome is 
not discrete.



Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

• f = time of lightning strike

• Every time within [0,1] is equally likely

– Time measured with infinitesimal precision.

25

0 1f = 0.71237131931129576…

The outcome space is not discrete
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Lightning strikes a pole within a one-minute time frame

• f = time of lightning strike

• Every point in time within [0,1] is equally likely

0 10.5

½� f ≥ 0.5 =
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Lightning strikes a pole within a one-minute time frame

• f = time of lightning strike

• Every point in time within [0,1] is equally likely

� 0.2 8 f 8 0.5 =

0 10.5

0.5 − 0.2 = 0.3

0.2
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Lightning strikes a pole within a one-minute time frame

• f = time of lightning strike

• Every point in time within [0,1] is equally likely

� f = 0.5 =

0 10.5

0



Bottom line

• This gives rise to a different type of random variable

• � f = K = 0 for all K ∈ [0,1]

• Yet, somehow we want

– � f ∈ [0,1] = 1

– � f ∈ [�, 
] = 
 − �

– …

• How do we model the behavior of f?
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