CSE 312

Foundations of Computing II

Lecture 12: Zoo of Discrete RVs
Review Variance – Properties

Definition. The variance of a (discrete) RV X is

$$\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_x(x) \cdot (x - \mathbb{E}[X])^2$$

Theorem. For any $a, b \in \mathbb{R}$, $\text{Var}(a \cdot X + b) = a^2 \cdot \text{Var}(X)$

(Proof: Exercise!)

Theorem. $\text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$
Review Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$

Corollary. If X_1, X_2, \ldots, X_n mutually independent,

$$\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i} \text{Var}(X_i)$$
Motivation for “Named” Random Variables

Random Variables that show up all over the place.
 – Easily solve a problem by recognizing it’s a special case of one of these random variables.

Each RV introduced today will show:
 – A general situation it models
 – Its name and parameters
 – Its PMF, Expectation, and Variance
 – Example scenarios you can use it
Welcome to the Zoo! (Preview)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Formula</th>
</tr>
</thead>
</table>
| $X \sim \text{Unif}(a, b)$ | $P(X = k) = \frac{1}{b - a + 1}$

$\mathbb{E}[X] = \frac{a + b}{2}$

$\text{Var}(X) = \frac{(b - a)(b - a + 2)}{12}$ |
| $X \sim \text{Ber}(p)$ | $P(X = 1) = p, P(X = 0) = 1 - p$

$\mathbb{E}[X] = p$

$\text{Var}(X) = p(1 - p)$ |
| $X \sim \text{Bin}(n, p)$ | $P(X = k) = \binom{n}{k}p^k(1-p)^{n-k}$

$\mathbb{E}[X] = np$

$\text{Var}(X) = np(1 - p)$ |
| $X \sim \text{Geo}(p)$ | $P(X = k) = (1 - p)^{k-1}p$

$\mathbb{E}[X] = \frac{1}{p}$

$\text{Var}(X) = \frac{1 - p}{p^2}$ |
| $X \sim \text{NegBin}(r, p)$ | $P(X = k) = \binom{k - 1}{r - 1}p^r(1-p)^{k-r}$

$\mathbb{E}[X] = \frac{r}{p}$

$\text{Var}(X) = \frac{r(1 - p)}{p^2}$ |
| $X \sim \text{HypGeo}(N, K, n)$ | $P(X = k) = \binom{K}{k}\binom{N-K}{n-k}\binom{N}{n}$

$\mathbb{E}[X] = \frac{K}{N}$

$\text{Var}(X) = n\frac{K(N - K)(N - n)}{N^2(N - 1)}$ |
• Discrete Uniform Random Variables
• Bernoulli Random Variables
• Binomial Random Variables
• Geometric Random Variables
• Applications
Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation:

PMF:

Expectation:

Variance:

Example: value shown on one roll of a fair die
Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation: $X \sim \text{Unif}(a, b)$

PMF: $P(X = i) = \frac{1}{b - a + 1}$

Expectation: $\mathbb{E}[X] = \frac{a + b}{2}$

Variance: $\text{Var}(X) = \frac{(b-a)(b-a+2)}{12}$

Example: value shown on one roll of a fair die is $\text{Unif}(1,6)$:
- $P(X = i) = 1/6$
- $\mathbb{E}[X] = 7/2$
- $\text{Var}(X) = 35/12$
Agenda

• Discrete Uniform Random Variables
• Bernoulli Random Variables
• Binomial Random Variables
• Geometric Random Variables
• Applications
Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.

Notation: $X \sim \text{Ber}(p)$

PMF: $P(X = 1) = p$, $P(X = 0) = 1 - p$

Expectation:

Variance:

Poll: pollev.com/stefanotessaro617

<table>
<thead>
<tr>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>p</td>
</tr>
<tr>
<td>B.</td>
<td>p</td>
</tr>
<tr>
<td>C.</td>
<td>p</td>
</tr>
<tr>
<td>D.</td>
<td>p</td>
</tr>
</tbody>
</table>
Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.

Notation: $X \sim \text{Ber}(p)$

PMF: $P(X = 1) = p$, $P(X = 0) = 1 - p$

Expectation: $\mathbb{E}[X] = p$ \quad Note: $\mathbb{E}[X^2] = p$

Variance: $\text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = p - p^2 = p(1 - p)$

Examples:
- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails
- Any indicator RV
Agenda

• Discrete Uniform Random Variables
• Bernoulli Random Variables
• Binomial Random Variables
• Geometric Random Variables
• Applications
Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$.

Examples:
- # of heads in n coin flips
- # of 1s in a randomly generated n bit string
- # of servers that fail in a cluster of n computers
- # of bit errors in file written to disk
- # of elements in a bucket of a large hash table

Poll:

$P(X = k)$
A. $p^k (1 - p)^{n-k}$
B. np
C. $\binom{n}{k} p^k (1 - p)^{n-k}$
D. $\binom{n}{n-k} p^k (1 - p)^{n-k}$
Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Notation: $X \sim \text{Bin}(n, p)$

PMF: $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

Expectation:

Variance:

Poll: pollev.com/stefanotessaro617

<table>
<thead>
<tr>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. p</td>
<td>p</td>
</tr>
<tr>
<td>B. np</td>
<td>$np(1 - p)$</td>
</tr>
<tr>
<td>C. np</td>
<td>np^2</td>
</tr>
<tr>
<td>D. np</td>
<td>$n^2 p$</td>
</tr>
</tbody>
</table>
Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Notation: $X \sim \text{Bin}(n, p)$

PMF: $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

Expectation: $\mathbb{E}[X] = np$

Variance: $\text{Var}(X) = np(1 - p)$
Mean, Variance of the Binomial

“i.i.d.” is a commonly used phrase. It means “independent & identically distributed”

If $Y_1, Y_2, \ldots, Y_n \sim \text{Ber}(p)$ and independent (i.i.d.), then

$X = \sum_{i=1}^{n} Y_i$, $X \sim \text{Bin}(n, p)$

Claim $\mathbb{E}[X] = np$

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} \mathbb{E}[Y_i] = n\mathbb{E}[Y_1] = np$$

Claim $\text{Var}(X) = np(1 - p)$

$$\text{Var}(X) = \text{Var}\left(\sum_{i=1}^{n} Y_i\right) = \sum_{i=1}^{n} \text{Var}(Y_i) = n\text{Var}(Y_1) = np(1 - p)$$
Binomial PMFs

PMF for $X \sim \text{Bin}(10, 0.5)$

PMF for $X \sim \text{Bin}(10, 0.25)$
Binomial PMFs

PMF for $X \sim \text{Bin}(30, 0.5)$

PMF for $X \sim \text{Bin}(30, 0.1)$
Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).

Let X be the number of corrupted bits. What is $\mathbb{E}[X]$?

Poll:

pollev.com/stefanotessaro617

a. 1022.99
b. 1.024
c. 1.02298
d. 1
e. Not enough information to compute
Brain Break
Agenda

• Discrete Uniform Random Variables
• Bernoulli Random Variables
• Binomial Random Variables
• Geometric and other Random Variables
Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the first success. X is called a Geometric random variable with parameter p.

Notation: $X \sim \text{Geo}(p)$

PMF:

Expectation:

Variance:

Examples:
- # of coin flips until first head
- # of random guesses on MC questions until you get one right
- # of random guesses at a password until you hit it
Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the first success. X is called a Geometric random variable with parameter p.

Notation: $X \sim \text{Geo}(p)$

PMF: $P(X = k) = (1 - p)^{k-1}p$

Expectation: $\mathbb{E}[X] = \frac{1}{p}$

Variance: $\text{Var}(X) = \frac{1-p}{p^2}$

Examples:
- # of coin flips until first head
- # of random guesses on MC questions until you get one right
- # of random guesses at a password until you hit it
Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What is $\mathbb{E}[X]$?
A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the r^{th} success. Equivalently, $X = \sum_{i=1}^{r} Z_i$ where $Z_i \sim \text{Geo}(p)$.

X is called a **Negative Binomial random variable** with parameters r, p.

Notation: $X \sim \text{NegBin}(r, p)$

PMF: $P(X = k) = \binom{k-1}{r-1} p^r (1 - p)^{k-r}$

Expectation: $\mathbb{E}[X] = \frac{r}{p}$

Variance: $\text{Var}(X) = \frac{r(1-p)}{p^2}$
Hypergeometric Random Variables

A discrete random variable X that models the number of successes in n draws (without replacement) from N items that contain K successes in total. X is called a Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \text{HypGeo}(N, K, n)$

PMF: $P(X = k) = \frac{{K \choose k} {N-K \choose n-k}}{{N \choose n}}$

Expectation: $\mathbb{E}[X] = n \frac{K}{N}$

Variance: $\text{Var}(X) = n \frac{K(N-K)(N-n)}{N^2(N-1)}$
Hope you enjoyed the zoo!

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \sim \text{Unif}(a, b)$</td>
<td>$P(X = k) = \frac{1}{b - a + 1}$, $\mathbb{E}[X] = \frac{a + b}{2}$, $\text{Var}(X) = \frac{(b - a)(b - a + 2)}{12}$</td>
</tr>
<tr>
<td>$X \sim \text{Ber}(p)$</td>
<td>$P(X = 1) = p$, $P(X = 0) = 1 - p$, $\mathbb{E}[X] = p$, $\text{Var}(X) = p(1 - p)$</td>
</tr>
<tr>
<td>$X \sim \text{Bin}(n, p)$</td>
<td>$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$, $\mathbb{E}[X] = np$, $\text{Var}(X) = np(1 - p)$</td>
</tr>
<tr>
<td>$X \sim \text{Geo}(p)$</td>
<td>$P(X = k) = (1 - p)^{k-1} p$, $\mathbb{E}[X] = \frac{1}{p}$, $\text{Var}(X) = \frac{1 - p}{p^2}$</td>
</tr>
<tr>
<td>$X \sim \text{NegBin}(r, p)$</td>
<td>$P(X = k) = \binom{k-1}{r-1} p^r (1 - p)^{k-r}$, $\mathbb{E}[X] = \frac{r}{p}$, $\text{Var}(X) = \frac{r(1 - p)}{p^2}$</td>
</tr>
<tr>
<td>$X \sim \text{HypGeo}(N, K, n)$</td>
<td>$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$, $\mathbb{E}[X] = \frac{K}{n}$, $\text{Var}(X) = n \frac{K(N - K)(N - n)}{N^2(N - 1)}$</td>
</tr>
</tbody>
</table>
Preview: Poisson

Model: # events that occur in an hour

– Expect to see 3 events per hour (but will be random)
– The expected number of events in t hours, is $3t$
– Occurrence of events on disjoint time intervals is independent