CSE 312
Foundations of Computing i

Lecture 11: Bloom Filters

Announcements

* PSet 3 due today
* PSet 2 returned this morning
* PSet 4 posted overnight

— Last PSet prior to midterm (midterm is in exactly two weeks from
now)

— Midterm info will follow soon

— PSet 5 will only come after the midterm in two weeks

Last Class:
* Variance
* Independent random variables

Today:
* Properties of Independent RVs @

* An application: Bloom Filters!

Kandinsky

This Photo by Unknown Author is licensed under CC BY-SA

e
=

Variance - Properties

__

Variance of Indicator Random Variables

Suppose that X, is an indicator RV for event A with P(A) = p so

E[X,] = P(A) =p

—

Since X, only takes on values 0 and 1, we always have X5 = X,
SO

Var(X,) = IE[X;%] — E[X4]° = E[X4] — E[X4]° :f -p*=p(1-p)

= 7

—

Important Facts about Independent Random Variables

...

- Corollary. If X;, X5, ..., X, mutually independent,

Var (i Xl-> = zn:Var(Xi) =

1=1

__

Example - Coin Tosses

We flip n independent coins, each one heads with probablllty p

O 1, it outcome is heads Fact. Z = Y, X; |
‘|0, i outcome is tails. -

- Z = number of heads - P(X; =1) = p
| PX;=0)=1-p |
WhERERBIZIP WheRRTar(R . e
T) PZ=1k) = (oA -pnF |

Note: X4, ..., X,, are mutually independent! [Verify it formally!]
n

‘ Var(Z) = Z Var(X;) =n-p(1—p) NoteVar(X) =p(1—p)
i=1

(Not Covered) Proof of E[X - Y] = E[X] - E[Y]

Proof Let x;,y;,i = 1,2, ...be the possible values of X, Y.

i

- Y> independence

:Zin-}’i-P(X wiyf)

:le--P(X=xi)'<2y]"P(yz3’j)>
J

l

= E[X] - E[Y]

Note: NOT true in general; see earlier example E[X?]#E[X]?

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

Proof Var(X +Y)

= E[(X + Y)?] — (E[X + Y])? _— linearity

= E[X? + 2XY + Y?] — (E[X] + E[Y])?

= E[X?] + 2 E[XY] + E[Y?] — (E[X]? + 2 E[X] E[Y] + E[Y]?)
= E[X?] — E[X]? + E[Y?] — E[Y]? + 2 E[XY] — 2 E[X] E[Y]
= Var(X) + Var(Y) + 2 E[XY] — 2 E[X] E[Y]

—

equal by independence

= Var(X) + Var(Y)

Last Class:
* Variance
* Independent random variables

Today:
* Properties of Independent RVs
* An application: Bloom Filters!

Kandinsky

This Photo by Unknown Author is licensed under CC BY-SA

e
=

Basic Problem

Problem: Store a subset S of a large set U.

Example. U = set of 128 bit strings |U| =~ 2128
S = subset of strings of interest S| ~ 1000

 Two goals:
1. Very fast (ideally constant time) answers to queries “Is x € §?”
forany x € U.

2. Minimal storage requirements.

__

11

Naive Solution | - Constant Time

__— Alx] = {1 ifx€esS

Idea: Represent S as an array A with 2722 entries. 0 ifxegs

NI (T T N 2 I N
1 0 1 0 1 0 0

S=1{02,.., K

Membership test: To check. x € S just check whether A[x]| = 1.

— constant time! ﬂ

Storage: Require storing 228 bits, even for small S. .

12

Naive Solution Il - Small Storage

Idea: Represent S as a list with |S| entries.

S =1{0,2,..,K ‘ o[\ 2 T/\ /\ K‘

Storage: Grows with S| only

Membership test: Check x € S requires time linearin |S|

(Can be made logarithmic by using a tree) Q

13

Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check x € S just check whether Alh(x)]| = x

Storage: m elements (size of array)

hash function h: U — [m]

14

Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check x € S just check whether Alh(x)| = x

Storage: m elements (size of array)

Challenge 2: Ensure
m = 0(|S])

©

Challenge 1: Ensure

h(x) + h(y) for
most x,y € S

\

15

Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct x,y € S,
i.e., two elements of set map to the same location

Common solution: chaining — at each ! i 3]4]5] - |m
location (bucket) in the table, keep =))h(|

linked list of all elements that hash there.

Good hash functions to keep collisions low

* The hash function h is good iff it
— distributes elements uniformly across the m array locations so that

— pait@_cieJements are mapped independently

““‘Universal Hash Functions” — see CSE 332

17

Hashing: summary

Hash Tables

* They store the data itself

* With a good hash function, the data
is well distributed in the table and

lookup times are small. In some cases, |S| is huge,

 However, they need at least as much / or not known a-priori ...
space as all the data being stored, —

i.e., m = QS| \\ ;
Can we do

better!?

| Bloom Filters

4 1o Ees
W5 e
| Pl .

to the rescue

(Named after Burton Howard Bloom)
INiSTBEAVTWELEINE FF)V IRE T A

\

Bloom Filters — Main points

Probabilistic data structure.

Close cousins of hash tables.
- But: Ridiculously space efficient

Occasional errors, specifically false positives.

20

Bloom Filters

Stores information about a set of elements S € U.

- =
Supports two operations:

1. add(x)-addsx € U tothesetS
2. contains(x) —ideally: trueif x € §, false otherwise

Instead, relaxed guarantees:
. False — definitely notin S
. True — possibly in S
[i.e. we could have false positives]

21

Bloom Filters - Why Accept False Positives?

* Speed - both add and contains very very fast.

* Space - requires a miniscule amount of space relative to
storing all the actual items that have been added.

— Often just 8 bits perinserted item!

—

* Fallback mechanism - can distinguish false positives from
true positives with extra cost

— Ok if mostly negatives expected + low false positive rate

22

Bloom Filters: Application

Google Chrome has a database of malicious URLs, but it takes a long

time to query.

Want an in-browser structure, so needs to be efficient and be space-

efficient

Want it so that can check if a URL is in structure:

- If return False, then definitely not in the structure (don’t need to
do expensive database lookup, website is safe)

- If return True, the URL may or may not be in the structure. Have to
perform expensive lookup in this rare case.

23

Bloom Filters — More Applications

* Any scenario where space and efficiency are important.
* Used alot in networking

* Indistributed systems when want to check consistency of data across
different locations, might send a Bloom filter rather than the full set
of data being stored.

* Google BigTable uses Bloom filters to reduce disk lookups

* Internet routers often use Bloom filters to track blocked IP
addresses.

* Andonandon...

24

What you can’t do with Bloom filters

* Thereis no delete operation
— Once you have added something to a Bloom filter for S, it stays

* You can’t use a Bloom filter to name any element of §

But what you can do makes them very effective!

25

Bloom Filters - Ingredients

Basic data structure is a k X m binary array
“the Bloom filter”

* krowsty,..,1t, eachof sizem

» Think of each row as an m-bit vector

k different hash functions hq, ..., h,: U — |m]

26

Bloom Filters — Three operations

* Set up Bloom filter for S = @

» Update Bloom filter for S « S U {x}

e Checkifx €S

function INITIALIZE(k, m)
fori=1,..., k:do

t; = new bit vector of m Os

function ADD(x)
fori=1,.., k:do

27

Bloom Filters - Initialization

Size of array

Number of :
associated to
hash N hash
functions 216 . &2
Z function.

function INITIALIZE(k, m)

. _ _, for each hash
fori=1,..,k:do function, initialize

t; = new bit vector of m Os an empty bit
vector of size m

Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

— -

0 1
t, 0 0
t, 0 0
t, 0 0

Bloom Filters: Add

function ADD(x)

fori = 1, cen) k: do | ———— foreach hash
function h,

Index into i-th bit-vector, at index produced h,(x) — result of hash
by hash function and set to 1 function h; on x

Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)
function ADD(x) h,(“thisisavirus.com”) — 2
fori=1,..,k:do

tilh;(x)] =1

Index 0 1 2
t, 0 0 0
t, 0 0 0
t, 0 0 0

Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function ADD(X) h,(“thisisavirus.com”) — 2
fori=1,..,k:do h,(“thisisavirus.com”) — 1
ti[h;(x)] =1
Index 0 1 2
t, 0 0 1
t, 0 0 0
t, 0 0 0

Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function ADD(x) h,(“thisisavirus.com”) — 2
fori=1,..,k:do h,(“thisisavirus.com”) — 1
tilh;(x)] =1 h;(“thisisavirus.com”) — 4

Index 0 1 o

t 0 0 1

12} 0 1 0

I3 0 0 0

Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function ADD(x) h,(“thisisavirus.com”) — 2
fori=1,..,k:do h,(“thisisavirus.com”) — 1
tilh;(x)] =1 h;(“thisisavirus.com”) — 4

Index 0 1 o

t 0 0 1

12} 0 1 0

I3 0 0 0

Bloom Filters: Contains

function CONTAINS(x)

returnt,[h,(x)] == 1A t;[h,(x)] == 1A At [h(x)] == 1

Returns True if the bit vector ¢, for each hash function has bit 1 at
index determined by h;(x),
Returns False otherwise

Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

Index 0 1 2 3
t, 0 0 1 0
t, 0 1 0 0
t, 0 0 0 0

Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2

Index 0 1 2 3
t, 0 0 1 0
t, 0 1 0 0
t, 0 0 0 0

Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2
h,(“thisisavirus.com”) — 1

Index 0 1 2 3
t, 0 0 1 0
t, 0 1 0 0
t, 0 0 0 0

Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2
h,(“thisisavirus.com”) — 1

h,(“thisisavirus.com”) — 4

Index 0 1 o 3
ty 0 0 1 0

Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2

True True True
h,(“thisisavirus.com”) — 1
h,(“thisisavirus.com”) — 4

Index 0 1 5 3

Since all conditions satisfied, returns True (correctly)

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)
function ADD(x)
fori=1,..,k:do

tilh;(x)] =1

Index 0 1 2
t, 0 0 1
t, 0 1 0
t, 0 0 0

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallvnotsuspicious.com”)
function ADD(x) h,(“totallynotsuspicious.com”) — 1
fori=1,..,k:do

tilh;(x)] =1

Index 0 1 2 3
N —
t, 0 0 1 0
t, 0 1 0 0
t, 0 0 0 0

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallvnotsuspicious.com”)

function ADD(x) h,(“totallynotsuspicious.com”) — 1
fori=1,.. k:do h,(“totallynotsuspicious.com”) — 0
ti[hi(x)] =1
Index 0 1 2 3
t, 0 1 1 0
t, 0 1 0 0
t 0 0 0 0

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallvnotsuspicious.com”)

function ADD(x) h,(“totallynotsuspicious.com”) — 1
fori=1,.. k:do h,(“totallynotsuspicious.com”) — 0
ti[h;(x)] =1 h,(“totallynotsuspicious.com”) — 4

Index 0 1 2 3

t 0 1 1 0

t, 1 1 0 0

t, 0 0 0 0

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallvnotsuspicious.com”)

function ADD(x) h,(“totallynotsuspicious.com”) — 1
fori=1,.. k:do h,(“totallynotsuspicious.com”) — 0
ti[h;(x)] =1 h,(“totallynotsuspicious.com”) — 4

Index 0 1 2 3

t 0 1 1 0

t, 1 1 0 0

t, 0 0 0 0

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

Index 0 1 2 3
t, 0 1 1 0
t, 1 1 0 0
t, 0 0 0 0

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2

Index 0 1 2 3
t, 0 1 1 0
t, 1 1 0 0
t, 0 0 0 0

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2
h,(“verynormalsite.com”) — 0

Index 0 1 2 3
t, 0 1 1 0
t, 1 1 0 0
t, 0 0 0 0

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2
h,(“verynormalsite.com” — 0
h;(“verynormalsite.com”) — 4

Index 0 1 2 3
t, 0 1 1 0
t, 1 1 0 0
t, 0 0 0 0

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2
h,(“verynormalsite.com” — 0

True True True

h;(“verynormalsite.com”) — 4

Analysis: False positive probability

Question: For an element x € U, what is the probability that
contains(x) returns true if add(x) was never executed before?

Probability over what?! Over the choice of the hq, ..., hy,

Assumptions for the analysis (somewhat stronger than for ordinary
hashing):

 Each h;(x) is uniformly distributed in [m] for all x and i /
 Hash function outputs for each h;are mutually independent (not

just in pairs)
 Different hash functions are independent of each other —

False positive probability — Events

Assume we perform add(x,), ...,add(x,,)
+ contains(x) forx & {xq, ..., x,}

Event E; holds iff h;(x) € {h;(x;), ..., h;(x;,)}

k
P(false positive) = P(E; N E, NN Ey) = HP(Ei)
i=1

= 1
1 o0 0, INEEPEREERE P (&) -7 (6‘)

53

False positive probability — Events

Event E; holds iff h;(x) € {h;(x,), ..., h;(x,;,)}

Event E7 holds iff h;(x) # h;(x;) and ... and h;(x) # h;(x,)
L,/J? \/ _ - /’/l‘/
£<e,
/

P(ED) =) P(ny(x) = 2) - P(ES I(hy(x) =2
z=1

LTP

54

.. . Event E; holds iff h; (x) # h;(x;) and ...
False positive probability - Events |and h;(x) # h;(x,) =

‘E_
P(ﬁic_| h;(x) =z) = P(h;j(xy) # 2z, ..,hj(x,) # z| h;(x) = z)

A

— P(hl(xl) * Z, ...,hi(xn) 7 Z)

ence of values | _—

h ond ferent inputs

f\f} [<2

Outputs of h; uniformly spread n 1) (1)n

Ay —-T1(t-%)-(r-=

P(E;) =) P(hy(x) =2z) - P(E{| hy(x) =z) = (1 —%)
z=1

j=1

nEY

_
55

False positive probability — Events

Event E; holds iff h;(x) € {h;(x,), ..., h;(x,;,)}

Event E7 holds iff h;(x) # h;(x;) and ...

1\"
P(ES) = (1 -—>
m

and h; (x) # h;(x,,)

56

False Positivity Rate — Example
1 n
R = (1-(1-))
m

e.g.,n = 5,000,000 e,
A mm) FPR=1.28%

m = 2,500,000

k

57

Comparison with Hash Tables - Space

o Google storing 5 million URLs, each URL 40 bytes.
e Bloom filterwithk = 30andm = 2,500,000

Hash Table

(optimistic)
5,000,000 x 40B = 200MB

Bloom Filter

2,500,000 x 30 = 75,000,000 bits
< 10 MB

Time

e Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
e 0.5seconds to do lookup in the database, 1ms for lookup in Bloom filter.

S ose the false positive rate is 3%
e POSIHY 3 0.5 seconds DB lookup

false positives / X

100000 x 0.03 X 500ms +2000 x 500 ms
Ims + L 3

102000
T total URLs malicious URLs

~ 25.51ms

Bloom filter lookup

Bloom Filters typical of....
... randomized algorithms and randomized data structures.

* Simple

* Fast
 Efficient
* Elegant
e Useful!

60

