CSE 312
Foundations of Computing Il

Lecture 7: Bayesian Inference, Chain Rule,
Independence



Conditional & Total Probabilities

* Conditional Probability

P(A N B)
P(B|A) = P(A)
* Bayes Theorem
P(A|B) = P(BIL/(%I;(A) if P(A) # 0,P(B) # 0
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Agenda

* Bayes Theorem + Law of Total Probability
* Chain Rule

* Independence

* Infinite process and Von Neumann’s trick

* Conditional independence



Example - Zika Testing

Suppose we know the following Zika stats
— Atestis 98% effective at detecting zika (“true positive”)  P(T'|Z)
— However, the test may yield a “false positive” 1% of the time P (T|Z¢)
— 0.5% of the US population has zika. P (Z)

What is the probability you test negative (event T¢) if you have Zika (event Z)?
P(T|Z) = 1 - P(T|Z) = 2%

What is the probability you have Zika (event Z) if you test negative (event T“)?

P(T¢|Z)P(2)

By Bayes Rule, P(Z|T¢) =

P(T¢)
By the Law of Total Probability, P(T¢) = P(T“|Z)P(Z) + P(T“|Z°)P(Z°)
2 5 +(1_ 1) 995 _ 10 98505
~ 100 1000 100) 1000 100000 ' 100000
So, P(Z|T€) = ———— ~ 0.01 %

10+98505 4




Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let £, £, ..., E,, be a partition of the
sample space, and F and event. Then,

P(FIEDP(E)  P(FIE)P(E;)
PEIR) =—"pF =S, PFIE)P(ED

Simple Partition: In particular, if £ is an event with non-zero
probability, then
P(F|E)P(E)

P(F|E)P(E) + P(F|E©)P(E®)

P(E|F) =



Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let £, £, ..., E,, be a partition of the
sample space, and F and event. Then,

P(FIEDP(Ey) _ P(FIE)P(E)

P(E{|F) =

Simple Partition: In particu
probability, then

P(E|F) =

P(F) ie  P(F|E))P(E;)

We just used this implicity on the negative Zika
test example with E =Zand F =T¢

<

P(F|E)P(E)

P(F|E)P(E) + P(F|E©)P(E®)




Our First Machine Learning Task: Spam Filtering

Subject: “FREE CLICK HERFE”

What is the probability this email is spam, given the subject contains
“FREE”?

Some useful stats:
— 10% of ham (i.e., not spam) emails contain the word “FREE” in the subject.
— 70% of spam emails contain the word “FREE” in the subject.
— 80% of emails you receive are spam.



Agenda

* Bayes Theorem + Law of Total Probability
e Chain Rule a

* Independence

* Infinite process and Von Neumann’s trick
* Conditional independence



Chain Rule

P(A N B)
P(A)

P(B|A) =




Often probability space (£, IP) is given implicitly via sequential

process
RR
nght <
Recall from last time:
Left <

P(R) = P(Left)xP(R|Left) + P(Right)xP (R|Right)

What if we have more than two (e.g., n) steps?
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Chain Rule

P(BlA) = P(A N B)

Theorem. (Chain Rule) For events 4;, A, ..., 4, ,
P(AyNn--NA,) =P(Ay) - P(Az|A1) - P(A3|A1 N Ay)

An easy way to remember: We have n tasks and we can do them
sequentially, conditioning on the outcome of previous tasks
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Chain Rule Example

Shuffle a standard 52-card deck and draw the top 3 cards.
(uniform probability space)

4 Wah | |10
What is P( Q 33 )=P(ANBNC)
o (0w

A: Ace of Spades First
B:10 of Clubs Second

P(A)-P(BlA) - P(ClANB) C: 4 of Diamonds Third

1 1 1
52 51 50




Agenda

Bayes Theorem + Law of Total Probability
Chain Rule

Independence @

Infinite process and Von Neumann’s trick
Conditional independence
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Independence

_____________________________________________________________________________________________________________________________________________________________________

Definition. Two events A and B are (statistically) independent if
' P(ANB) = P(A) - P(B).

Equivalent formulations:
 IfP(A) # 0, equivalentto P(B|A) = P(B)
« IfP(B) # 0, equivalentto P(A|B) = E(A)

_________________________________________________________________________________________________________________________________

-~ “The probability that B occurs after observing A” — Posterior
= “The probability that B occurs” - Prior
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Independence - Example

Assume we toss two fair coins P(A) — 2% 1 1
“first coin is heads” A = {HH, HT} 2
“second coin is heads” B = {HH, TH} p ( B) — 2% l 1

4 2

P(ANB) = P({HH)) = % — P(A) - P(B)

15



Example - Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.
*A={atmostoneT} = {HHH,HHT,HTH, THH}
B={atmost2 H's} = {HHH}*

Independent?

P(ANB) 2P(A) - P(B)

Poll:

A. Yes, independent
B. No

pollev/stefanotessaro617

Q| W
H
N[ =
ool BN
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Multiple Events — Mutual Independence

_____________________________________________________________________________________________________________________________________________________________________

Definition. Events 44, ..., 4,, are mutually independent if for every
- non-empty subset / € {1, ..., n}, we have

p (ﬂ Ai) _ HP(Ai).

_______________________________________________________________________________________________________________________________________
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Example — Network Communication

Each link works with the probability given, independently

i.e., mutually independent
events A4, B, C, D with

P(A)=p
P(B) =q
P(C)=r

P(D) =s



Example — Network Communication

If each link works with the probability given, independently:
What’s the probability that nodes 1 and 4 can communicate?

P (1-4 connected ) = P((A NB)U(CN D))
=P(ANB)+P(CNnD)—P(ANBNCND)

P(ANB) = P(A)-P(B) = pq
P(CNnD)=P(C)-P(D)=rs

P(ANBNCnND)
=P(A)-P(B)-P(C)-P(D) =npgrs

P(1-4 connected) =pq +1rs —pqrs




Independence as an assumption

* People often assume it without justification

 Example: A skydiver has two chutes

A: event that the main chute doesn’t open P(4) = 0.02
B: event that the back-up doesn’t open P(B) =0.1

* What is the chance that at least one opens assuming independence?

Assuming independence doesn’t justify the assumption!
Both chutes could fail because of the same rare event e.g., freezing rain.
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Independence - Another Look

_____________________________________________________________________________________________________________________________________________________________________

Definition. Two events A and B are (statistically) independent if
P(ANB) = P(A) - P(B).

_____________________________________________________________________________________________________________________________________________________________________

It is important to understand that independence is a property of probabilities of
outcomes, not of the root cause generating these events.

Events generated independently = their probabilities satisfy independence

/éN/ot necessarily

This can be counterintuitive! 21



Sequential Process Ball drawn

____________________________________________________________________________________________

Urn 5
B 1/2 / R - Setting: An urn contains:
35, 3R3B |

1/ ~+ 3redand 1blue balls w/ probability 1/10

N :
~
1/10 3/4 ~» 5redand 7 blue balls w/ probability 3/10
| 3R1B B We draw a ball at random from the urn.
1/4 T ‘
3/10
>/12 7/12 31 1 3 3 5 1
SR7B P(R) = =X =4 —X—F —X— ==

5,2 10 4 10 12 2

~*» 3redand 3 blue balls w/ probability 3/5

Are R and 3R3B independent?
P(3R3B)XP(R | 3R3B)

Independent! P(R) = P(R | 3R3B)
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Agenda

Bayes Theorem + Law of Total Probability
Chain Rule

Independence

Infinite process and Von Neumann’s trick
Conditional independence
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Often probability space (), P) is given implicitly via sequential
process

* Experiment proceeds in n sequential steps, each step follows
some local rules defined by the chain rule and independence

* Natural extension: Allows for easy definition of experiments
where |()| = oo
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Fun: Von Neumann’s Trick with a biased coin

* How to use a biased coin to get a fair coin flip:

—Suppose that you have a biased coin:
P(H)=p P(T)=1-p

1. Flip coin twice: Ifyouget HH or TT go to step 1
2. Ifyougot HT output H; if you got TH output T.

Why is it fair? P(H) = P(HT) = p(1 —p) = (1 = p)p = P(TH) = P(T)

Drawback: You may never get to step 2.
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The sample space for Von Neumann’s trick

* For each round of Von Neumann’s trick we flipped the
biased coin twice.
—If HT or TH appears, the experiment ends:
* Total probability each round: 2p(1 —p) callthisg

—If HH or TT appears, the experiment continues:
» Total probability each round: p? + (1 —p)? thisis1 — g

* Probability that flipping ends inround tis (1 —q)** - g
— Conditioned on ending inround t, P(H) = P(T) = 1/2

27



Sequential Process — Example

HTUTH

(HH U TT)(HT U TH)

(HH U TT)?(HT U TH)

(HH U TT)3(HT U TH)

28



The sample space for Von Neumann’s trick

More precisely, the sample space contains the successful outcomes:
Us=,(HH U TT)t_l(HT UTH)

which together have probability 72 (1 — q)*"*q for g = 2p(1 — p)

as well as all of the failing outcomes in (HH U TT).

Observethatg # 0iff 0 < p < 1. We have two cases:

e Ifqg#0then)2,(1—¢g)" ! = 1/qg so successful outcomes account
for total probability 1.

* If g = 0 then either:
— p = 1and (HH)® has probability 1.

— p = 0and (TT)* has probability 1.
29



Agenda

Bayes Theorem + Law of Total Probability
Chain Rule

Independence

Infinite process and Von Neumann’s trick
Conditional independence @
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Conditional Independence

Definition. Two events A and B are independent conditioned on C if
' P(C)#0andP(ANB|C)=P(A|C)-P(B|C).

e IfP(ANC) # 0, equivalentto P(B|[ANC)=P(B|C)
« IfP(BNC) #0,equivalentto P(A|IBNC) =P(A|C)

_____________________________________________________________________________________________________________________________________________________________________

Plain Independence. Two events 4 and B are independent if
' P(ANnB) = P(A) - P(B).

+ IfP(A) % 0, equivalent to P(B|4) = P(B)
+ IfP(B) # 0, equivalent to P(4|B) = P(A)

L 3o



Example - Throwing Dice

Suppose that Coin 1 has probability of heads 0.3

and Coin 2 has probability of head 0.9.
We choose one coin randomly with equal probability and flip that coin 3
times independently. What is the probability we get all heads?

P(HHH) — P(HHH |C1) : P(Cl) I P(HHH | CZ) . P(Cz) Law of Total Probability

(LTP)

= P(H|C1)® P(C,) + P(H|C2)° P(C2)  Conditional Independence
=0.33-0.5 +0.9%-0.5 =0.378

C; = coin [ was selected



Conditional independence and Bayesian inference in practice:
Graphical models

o The sample space () is often the Cartesian product of possibilities of
many different variables

« We often can understand the probability distribution P on () based on
local properties that involve a few of these variables at a time

o We can represent this via a directed acyclic graph augmented with
probability tables (called a Bayes net) in which each node represents
one or more variables...
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Graphical Models/Bayes Nets

* Bayes net for the Zika testing probability space ((, P)

( Has Zika )

Y

-

Tests
Positive

D

7 Z
0.005 |0995 |
T T
Z 1098 |0.02
~Z |0.01, |0.99

\\\

\
P(T|—|Z)

-—
-——
~---_-
-—
-

-
-’
-
-
-
-
-
-
-
f’
-

Conditional Probability Table:

* One column for each value of
the variables at the node

 One row for each combination
of values of immediate
predecessors

() = Cartesian product of possible
value assignments at all nodes.
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Graphical Models/Bayes Nets
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“A Bayesian Network Model for Diagnosis of Liver Disorders” — Agnieszka Onisko, M.S.,
Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.- September 1999.
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Graphical Models/Bayes Nets

Bayes Net assumption/requirement

* The only dependence between variables is given by paths in
the Bayes Net graph:

* if only edges are

then A and C are conditionally independent given the value of B

A, B, C conditionally (a) (&) (¢

independent given D

° e e A, B, and C are

independent

Defines a unique global probability space ((, P) 36




Inference in Bayes Nets

Given
* Bayes Net
* graph
* conditional probability tables
for all nodes

* (Observed values of variables at
some nodes

* e.g., clinical test results

Compute

* Probabilities of variables at
other nodes

* e.g., diagnoses

& G

Presence of resence of
hepatltlsB antibodies
suface antigen Presence to HBcAg in
blood

B antigen 2
in blogad Total bifirubin
g Hepatic
,lﬁ';'ﬂﬁn'ﬂy / encephalopath

Jaundice in
pregnancy

For much more see CSE 473
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“A Bayesian Network Model for Diagnosis of Liver Disorders” — Agnieszka
Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.-
September 1999.
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