
CSE 312

Foundations of Computing II
Lecture 7: Bayesian Inference, Chain Rule, 
Independence
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Review Conditional & Total Probabilities 

• Conditional Probability

• Bayes Theorem

• Law of Total Probability
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𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵
𝑃 𝐴

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃 𝐴

𝑃 𝐵

𝑃 𝐹 ='
!"#

$

𝑃 𝐹 ∩ 𝐸! ='
!"#

$

𝑃 𝐹 𝐸! 𝑃(𝐸!)

if 𝑃 𝐴 ≠ 0, 𝑃 𝐵 ≠ 0

𝐸#, … , 𝐸$ partition Ω



Agenda

• Bayes Theorem + Law of Total Probability
• Chain Rule
• Independence
• Infinite process and Von Neumann’s trick
• Conditional independence

3



Example – Zika Testing
Suppose we know the following Zika stats

– A test is 98% effective at detecting Zika (“true positive”)
– However, the test may yield a “false positive” 1% of the time
– 0.5% of the US population has Zika.

What is the probability you test negative (event 𝑇%) if you have Zika (event 𝑍)?

What is the probability you have Zika (event 𝑍) if you test negative (event 𝑇%)?
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𝑃(𝑇|𝑍)
𝑃(𝑇|𝑍%)

𝑃(𝑍)

𝑃 𝑇% 𝑍 = 1 − 𝑃 𝑇 𝑍 = 2%

By Bayes Rule, 𝑃 𝑍 𝑇% = 𝑃 𝑇% 𝑍 𝑃(𝑍)
𝑃(𝑇%)

By the Law of Total Probability, 𝑃 𝑇% = 𝑃 𝑇% 𝑍 𝑃 𝑍 + 𝑃 𝑇% 𝑍% 𝑃(𝑍%)

=
2
100

⋅
5

1000
+ 1 −

1
100

⋅
995
1000

=
10

100000
+

98505
100000

So, 𝑃 𝑍 𝑇% = #&
#&'()*&* ≈ 0.01 %



Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let 𝐸!, 𝐸", … , 𝐸# be a partition of the 
sample space, and 𝐹 and event. Then,

𝑃 𝐸! 𝐹) =
𝑃 𝐹 𝐸! 𝑃(𝐸!)

𝑃(𝐹) =
𝑃 𝐹 𝐸! 𝑃 𝐸!

∑$%!# 𝑃 𝐹 𝐸$ 𝑃 𝐸$

Simple Partition: In particular, if 𝐸 is an event with non-zero 
probability, then 

𝑃 𝐸 𝐹) =
𝑃 𝐹 𝐸 𝑃(𝐸)

𝑃 𝐹 𝐸 𝑃 𝐸 + 𝑃 𝐹 𝐸& 𝑃(𝐸&)
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Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let 𝐸!, 𝐸", … , 𝐸# be a partition of the 
sample space, and 𝐹 and event. Then,

𝑃 𝐸! 𝐹) =
𝑃 𝐹 𝐸! 𝑃(𝐸!)

𝑃(𝐹) =
𝑃 𝐹 𝐸! 𝑃 𝐸!

∑$%!# 𝑃 𝐹 𝐸$ 𝑃 𝐸$

Simple Partition: In particular, if 𝐸 is an event with non-zero 
probability, then 

𝑃 𝐸 𝐹) =
𝑃 𝐹 𝐸 𝑃(𝐸)

𝑃 𝐹 𝐸 𝑃 𝐸 + 𝑃 𝐹 𝐸& 𝑃(𝐸&)
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We just used this implicity on the negative Zika
test example with 𝐸 = 𝑍 and 𝐹 = 𝑇%



Our First Machine Learning Task: Spam Filtering

Subject: “FREE $$$ CLICK HERE”

What is the probability this email is spam, given the subject contains 
“FREE”? 

Some useful stats:
– 10% of ham (i.e., not spam) emails contain the word “FREE” in the subject.
– 70% of spam emails contain the word “FREE” in the subject.
– 80% of emails you receive are spam.
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Agenda

• Bayes Theorem + Law of Total Probability
• Chain Rule
• Independence
• Infinite process and Von Neumann’s trick
• Conditional independence
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Chain Rule
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𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵
𝑃 𝐴

𝑃 𝐴 𝑃 𝐵 𝐴 = 𝑃 𝐴 ∩ 𝐵



Often probability space Ω,ℙ is given implicitly via sequential 
process

Recall from last time:
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𝑃 R = 𝑃 Left ×𝑃 R|Left + 𝑃 Right ×𝑃 R|Right

R R

L G

1/2

1/2

1/2

1/3

2/3
Right

Left
1/2

R G
L R

What if we have more than two (e.g., 𝑛)  steps?



Chain Rule
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𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵
𝑃 𝐴

𝑃 𝐴 𝑃 𝐵 𝐴 = 𝑃 𝐴 ∩ 𝐵

Theorem. (Chain Rule) For events 𝐴!, 𝐴", … , 𝐴# , 

𝑃 𝐴! ∩⋯∩ 𝐴# = 𝑃 𝐴! ⋅ 𝑃 𝐴" 𝐴! ⋅ 𝑃(𝐴$|𝐴! ∩ 𝐴")

⋯𝑃(𝐴#|𝐴! ∩ 𝐴" ∩⋯∩ 𝐴#%!)

An easy way to remember: We have 𝑛 tasks and we can do them 
sequentially, conditioning on the outcome of previous tasks



Chain Rule Example 

Shuffle a standard 52-card deck and draw the top 3 cards. 
(uniform probability space)

What is 𝑃 = 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶)?

𝐴: Ace of Spades First
𝐵: 10 of Clubs Second
𝐶: 4 of Diamonds Third

𝑃(𝐴) ⋅ 𝑃 𝐵 𝐴 ⋅ 𝑃 𝐶 𝐴 ∩ 𝐵

1
52

⋅
1
51

⋅
1
50



Agenda

• Bayes Theorem + Law of Total Probability
• Chain Rule
• Independence
• Infinite process and Von Neumann’s trick
• Conditional independence
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Independence
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Equivalent formulations:
• If 𝑃 𝐴 ≠ 0, equivalent to 𝑃 𝐵 𝐴 = 𝑃 𝐵
• If 𝑃 𝐵 ≠ 0, equivalent to 𝑃 𝐴 𝐵 = 𝑃 𝐴

Definition. Two events 𝐴 and 𝐵 are (statistically) independent if

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃(𝐵).

“The probability that 𝐵 occurs after observing 𝐴” – Posterior
= “The probability that 𝐵 occurs” – Prior  



Independence - Example
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Assume we toss two fair coins 

“first coin is heads”

“second coin is heads”

𝐴 = {HH,HT}
𝐵 = {HH, TH} 𝑃 𝐵 = 2×

1
4 =

1
2

𝑃 𝐴 = 2×
1
4 =

1
2

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐻𝐻 =
1
4
= 𝑃 𝐴 ⋅ 𝑃 𝐵



Example – Independence
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Toss a coin 3 times. Each of 8 outcomes equally likely. 
• 𝐴 = {at most one 𝑇} = {𝐻𝐻𝐻,𝐻𝐻𝑇,𝐻𝑇𝐻, 𝑇𝐻𝐻}
• 𝐵 = {at most 2 𝐻&s} = 𝐻𝐻𝐻 𝑐

Independent?

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃(𝐵)?

3
8
≠
1
2
⋅
7
8

Poll:
A. Yes, independent
B. No 
pollev/stefanotessaro617



Multiple Events – Mutual Independence
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Definition. Events 𝐴-, … , 𝐴. are mutually independent if for every 
non-empty subset 𝐼 ⊆ {1, … , 𝑛}, we have

𝑃 6
/∈1

𝐴/ =7
/∈1

𝑃(𝐴/) .



Example – Network Communication

1
2

3

4

𝑝

𝑟

𝑞

𝑠

Each link works with the probability given, independently

𝐴 𝐵
𝐶 𝐷

i.e., mutually independent 
events 𝐴, 𝐵, 𝐶, 𝐷 with

𝑃 𝐴 = 𝑝
𝑃 𝐵 = 𝑞
𝑃 𝐶 = 𝑟
𝑃 𝐷 = 𝑠



Example – Network Communication

1
2

3

4

𝑝

𝑟

𝑞

𝑠

If each link works with the probability given, independently:         
What’s the probability that nodes 1 and 4 can communicate? 

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃 𝐵 = 𝑝𝑞
𝑃 𝐶 ∩ 𝐷 = 𝑃 𝐶 ⋅ 𝑃 𝐷 = 𝑟𝑠 𝐴 𝐵

𝐶 𝐷

= 𝑃 𝐴 ∩ 𝐵) + 𝑃 (𝐶 ∩ 𝐷 − 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷)
𝑃 = 𝑃 𝐴 ∩ 𝐵 ∪ (𝐶 ∩ 𝐷)1-4 connected

𝑃 𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷
= 𝑃 𝐴 ⋅ 𝑃 𝐵 ⋅ 𝑃 𝐶 ⋅ 𝑃 𝐷 = 𝑝𝑞𝑟𝑠

𝑃 = 𝑝𝑞 + 𝑟𝑠 − 𝑝𝑞𝑟𝑠1-4 connected



Independence as an assumption

• People often assume it without justification

• Example:  A skydiver has two chutes

𝐴: event that the main chute doesn’t open         𝑃 𝐴 = 0.02
𝐵: event that the back-up doesn’t open               𝑃 𝐵 = 0.1

• What is the chance that at least one opens assuming independence?

Assuming independence doesn’t justify the assumption!    
Both chutes could fail because of the same rare event e.g., freezing rain.
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Independence – Another Look

21

Definition. Two events 𝐴 and 𝐵 are (statistically) independent if

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃(𝐵).

“Equivalently.” 𝑃 𝐴|𝐵 = 𝑃 𝐴 .

It is important to understand that independence is a property of probabilities of 
outcomes, not of the root cause generating these events. 

Events generated independently è their probabilities satisfy independence
ç

Not necessarily 

This can be counterintuitive!



Sequential Process
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R
3/5

1/10

3R3B

3R1B B

Setting: An urn contains:
• 3 red and 3 blue balls w/ probability 3/5
• 3 red and 1 blue balls  w/ probability 1/10 
• 5 red and 7 blue balls  w/ probability 3/10 
We draw a ball at random from the urn.

1/2

1/2

3/4

1/4
3/10

5R7B

Are R and 3R3B independent? 

5/12 7/12
𝑃 R =

3
5
×
1
2
+
1
10
×
3
4
+
3
10
×
5
12

=
1
2

Independent! 𝑃 R = 𝑃 R | 3R3B

𝑃 3R3B ×𝑃 R | 3R3B

Urn
Ball drawn
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Agenda

• Bayes Theorem + Law of Total Probability
• Chain Rule
• Independence
• Infinite process and Von Neumann’s trick
• Conditional independence

24



Often probability space Ω, 𝑃 is given implicitly via sequential 
process
• Experiment proceeds in 𝑛 sequential steps, each step follows 

some local rules defined by the chain rule and independence
• Natural extension: Allows for easy definition of experiments 

where Ω = ∞
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Fun:  Von Neumann’s Trick with a biased coin

• How to use a biased coin to get a fair coin flip:
– Suppose that you have a biased coin:

• 𝑃 𝐻 = 𝑝 𝑃 𝑇 = 1 − 𝑝

26

1. Flip coin twice:   If you get 𝐻𝐻 or 𝑇𝑇 go to step 1
2. If you got 𝐻𝑇 output 𝐻; if you got 𝑇𝐻 output 𝑇.

Why is it fair?  𝑃 𝐻) = 𝑃(𝐻𝑇 = 𝑝 1 − 𝑝 = 1 − 𝑝 𝑝 = 𝑃 𝑇𝐻 = 𝑃(𝑇)

Drawback:  You may never get to step 2.



The sample space for Von Neumann’s trick

• For each round of Von Neumann’s trick we flipped the 
biased coin twice.
– If 𝐻𝑇 or 𝑇𝐻 appears, the experiment ends:
• Total probability each round:  2𝑝(1 − 𝑝) call this 𝑞

– If 𝐻𝐻 or 𝑇𝑇 appears, the experiment continues:
• Total probability each round:  𝑝+ + 1 − 𝑝 + this is 1 − 𝑞

• Probability that flipping ends in round 𝑡 is 1 − 𝑞 '%! ⋅ 𝑞
– Conditioned on ending in round 𝑡, 𝑃 𝐻 = 𝑃 𝑇 = 1/2
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Sequential Process – Example
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𝑞

1 − 𝑞

𝑞

1 − 𝑞

𝑞

1 − 𝑞

𝑞

1 − 𝑞 …

𝐻𝑇 ∪ 𝑇𝐻

(𝐻𝐻 ∪ 𝑇𝑇)(𝐻𝑇 ∪ 𝑇𝐻)

𝐻𝐻 ∪ 𝑇𝑇 !(𝐻𝑇 ∪ 𝑇𝐻)

𝐻𝐻 ∪ 𝑇𝑇 "(𝐻𝑇 ∪ 𝑇𝐻)



The sample space for Von Neumann’s trick

More precisely, the sample space contains the successful outcomes:      
⋃'(!
) 𝐻𝐻 ∪ 𝑇𝑇 '%!(𝐻𝑇 ∪ 𝑇𝐻)

which together have probability ∑23-4 1 − 𝑞 25-𝑞 for 𝑞 = 2𝑝 1 − 𝑝
as well as all of the failing outcomes in 𝐻𝐻 ∪ 𝑇𝑇 ).

Observe that 𝑞 ≠ 0 iff 0 < 𝑝 < 1.   We have two cases:
• If 𝑞 ≠ 0 then ∑23-4 1 − 𝑞 25- = 1/𝑞 so successful outcomes account 

for total probability 1.
• If 𝑞 = 0 then either:
– 𝑝 = 1 and 𝐻𝐻 4 has probability 1.
– 𝑝 = 0 and 𝑇𝑇 4 has probability 1.
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Agenda

• Bayes Theorem + Law of Total Probability
• Chain Rule
• Independence
• Infinite process and Von Neumann’s trick
• Conditional independence
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Plain Independence. Two events 𝐴 and 𝐵 are independent if

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃(𝐵).

Conditional Independence
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• If 𝑃 𝐴 ≠ 0, equivalent to 𝑃 𝐵 𝐴 = 𝑃 𝐵
• If 𝑃 𝐵 ≠ 0, equivalent to 𝑃 𝐴 𝐵 = 𝑃 𝐴

• If 𝑃 𝐴 ∩ 𝐶 ≠ 0, equivalent to 𝑃 𝐵 𝐴 ∩ 𝐶 = 𝑃 𝐵 | 𝐶
• If 𝑃 𝐵 ∩ 𝐶 ≠ 0, equivalent to 𝑃 𝐴 𝐵 ∩ 𝐶 = 𝑃 𝐴 | 𝐶

Definition. Two events 𝐴 and 𝐵 are independent conditioned on 𝐶 if
𝑃 𝐶 ≠ 0 and 𝑃 𝐴 ∩ 𝐵 | 𝐶 = 𝑃 𝐴 | 𝐶 ⋅ 𝑃 𝐵 𝐶).



Example – Throwing Dice 

Suppose that Coin 1 has probability of heads 0.3
and Coin 2 has probability of head 0.9. 

We choose one coin randomly with equal probability and flip that coin 3 
times independently.   What is the probability we get all heads?

𝑃(𝐻𝐻𝐻) = 𝑃 𝐻𝐻𝐻 𝐶-) ⋅ 𝑃(𝐶-) + 𝑃(𝐻𝐻𝐻 𝐶6 ⋅ 𝑃(𝐶6)

= 𝑃 𝐻 𝐶- 7 𝑃(𝐶-) + 𝑃(𝐻 𝐶6 7 𝑃(𝐶6)

= 0.37 ⋅ 0.5 + 0.97 ⋅ 0.5 = 0.378

Law of Total Probability
(LTP)

Conditional Independence

𝐶! = coin 𝑖 was selected



Conditional independence and Bayesian inference in practice:              
Graphical models 

● The sample space Ω is often the Cartesian product of possibilities of 
many different variables

● We often can understand the probability distribution 𝑃 on Ω based on 
local properties that involve a few of these variables at a time

● We can represent this via a directed acyclic graph augmented with 
probability tables (called a Bayes net) in which each node represents 
one or more variables…
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Graphical Models/Bayes Nets

• Bayes net for the Zika testing probability space Ω, 𝑃

34

Has Zika

Tests 
Positive

𝒁 ¬𝒁
0.005 0.995

𝑻 ¬𝑻
𝑍 0.98 0.02

¬𝑍 0.01 0.99

Conditional Probability Table:
• One column for each value of 

the variables at the node
• One row for each combination 

of values of immediate 
predecessors

𝑃(𝑇|¬𝑍)
Ω = Cartesian product of possible 
value assignments at all nodes.  



Graphical Models/Bayes Nets

“A Bayesian Network Model for Diagnosis of Liver Disorders” – Agnieszka Onisko, M.S., 
Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.- September 1999.
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Graphical Models/Bayes Nets

Bayes Net assumption/requirement
• The only dependence between variables is given by paths in 

the Bayes Net graph:
• if only edges are 

then A and C are conditionally independent given the value of B

36

A B C

BA C

DBA C

D A, B, C conditionally 
independent given D

A, B, and C are
independent

Defines a unique global probability space (Ω, 𝑃)



Inference in Bayes Nets

“A Bayesian Network Model for Diagnosis of Liver Disorders” – Agnieszka
Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.-
September 1999.
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Given
• Bayes Net

• graph
• conditional probability tables 

for all nodes
• Observed values of variables at 

some nodes
• e.g., clinical test results

Compute
• Probabilities of variables at 

other nodes
• e.g., diagnoses

For much more see CSE 473


