CSE 312
Foundations of Computing i

Lecture 7: Bayesian Inference, Chain Rule,
Independence



Conditional & Total Probabilities

* Conditional Probability

P(ANB)
P(B|A) = PCA)
* Bayes Theorem
P(A|B) = P(BIL'?;I;(A) if P(A) # 0,P(B) # 0
* Law of Total Probability Ei, ..., E, partition

BN E 2 4 P(F)= ) P(FNnE) = ) P(FIE)P(E)
Q
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Conditional independence



Example - Zika Testing

Suppose we know the following Zika stats
— Atestis 98% effective at detecting Zika (“true positive”)  P(T|Z)
— However, the test may yield a “false positive” 1% of the time P (T'|Z°)
Sl
— 0.5% of the US population has Zika. P (Z)
What is the probability you test negative (event T¢) i

P(T¢|2) = 1—P(T|Z) = 2%

98505

So, P(Z|T°) =ﬁz 0.01 % \



Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let £, £, ..., E,, be a partition of the
sample space, and F and event. Then,

| P(FIEDP(E))  P(FIEDP(EY)
PR =——pF =S, PCFIEDP(E)

Simple Partition: In particular, if £ is an event with non-zero
probability, then
P(F|E)P(E)

P(F|E)P(E) + P(F|E€)P(E®)

P(E|F) =



Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let £, £, ..., E,, be a partition of the
sample space, and F and event. Then,

P(FIE)P(E;) _  P(FIEDP(Ey)

P(E{|F) =

Simple Partition: In particu
probability, then

P(E|F) =

P(F) i=1 P(F|E;)P(E;)

We just used this implicity on the negative Zika
test example with E =ZandF =T¢

7
P(F|E)P(E)

P(F|E)P(E) + P(F|E€)P(E®)




Our First Machine Learning Task: Spam Filtering

Subject: “"FREE CLICK HERE"

What is the probability this email is spam, given the subject contains
“FREE”?

Some useful stats:
— 10% of ham (i.e., not spam) emails contain the word “FREE” in the subject.
— 70% of spam emails contain the word “FREE” in the subject.
— 80% of emails you receive are spam.
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Chain Rule

P(A N B)

o m) P(A)P(B|A) = P(ANB)

P(B|A) =




Often probability space (), P) is given implicitly via sequential

process
nght <
Left <

P(R) = P(Left) x P(R|Left) + P(Right) X P(R|Right)

Recall from last time:

What if we have more than two (e.g., n) steps?

10



Chain Rule

P(BA) P(A N B)

Theorem. (Chain Rule) For events A, A, ..., A, ,
P(A; Nn--NAy) =P(A) - P(A2|A;) - P(A3]A; N Ay)

— AR |
(\/’) (A\ AAxAﬁj)\M —

_____________________________________________________________________________________________________________________________________________________________________

An easy way to remember: We have n tasks and we can do them
sequentially, conditioning on the outcome of previous tasks
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Chain Rule Example

Shuffle a standard 52-card deck and draw the top 3 cards.
(uniform probability space)

——

4 9 b ¢
What is P( 0 $$ )=P(ANBNC)?
LR KK
— \ q A: Ace of Spades First

AN 12 B: 10 of Clubs Second
P(A) - P(B|A) - P(CIANB
= P - ] ) C: 4 of Diamonds Third

1 1 1
52 51 50
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Independence

Definition. Two events A and B are (statistically) independent if
| _P(ANB) = P(A) - P(B).
S N T

Equivalent formulations:
 IfP(A) # 0, equivalentto P(B|A) = P(B)
 If P(B) # 0, equivalentto P(A|B) = E(A)

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

“The probability that B occurs after observing A” — Posterior
= “The probability that B occurs” - Prior

_________________________________________________________________________________________________________________________________

14



Independence - Example

Assume we toss two fair coins

P(A) =2 X

“first coin is heads” A = {HH, HT}

“second coin is heads” B = {HH, TH}

P(ANB) = P({HH)) =

P(B) =2 X

1
i P(A) - P(B)

»-[>|+—x -PIH

Nlr—\ Nlr—*
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Example - Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.

e A={atmostoneT} = {HHH,HHT,HTH,THH}

v\_,

e B = {at most two H'S} — {HHH}C/ 2
Independent? ;
= ] = F
P(ANnB) 2 P(4) - P(B) £ b
Poll E
A. Yes, independent
3 1 7 B. No
3 7 5 '8 pollev/paulbeame028

16



Multiple Events — Mutual Independence

_____________________________________________________________________________________________________________________________________________________________________

Definition. Events A4, ..., 4,, are mutually independent if for every
- non-empty subset ] € {1, ..., n}, we have

_____________________________________________________________________________________________________________________________________________________________________
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Example - Network Communication

Each link works with the probability given, independently

i.e., mutually independent
events A, B, C, D with

P(A) =p
P(B) =q
P(C)=r

P(D) =s



Example - Network Communication

If each link works with the probability given, independently:
What’s the probability that nodes 1 and 4 can communicate?

P(1-4 connected ) = P((A NB)U(CnN D))
=PANB)+P(CND)—P(ANBNCND)

P(AnB)=P(A) -P(B) = pq
P(CNnD)=P(C)-P(D)=rs
P(ANnBNCND)

= P(A)-P(B)-P(C)-P(D) =pqrs

P (1-4 connected) = pg + rs — pqrs




Independence as an assumption

* People often assume it without justification

* Example: A skydiver has two chutes

A: event that the main chute doesn’t open P(A) = 0.02
B: event that the back-up doesn’t open P(B) =0.1

* What is the chance that at least one opens assuming independence?

Assuming independence doesn’t justify the assumption!

Both chutes could fail because of the same rare event e.g., freezing rain.

20



Independence - Another Look

_____________________________________________________________________________________________________________________________________________________________________

 Definition. Two events A and B are (statistically) independent if
P(ANB) = P(4) - P(B).

_____________________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________

It is important to understand that independence is a property of probabilities of
outcomes, not of the root cause generating these events.

Events generated independently = their probabilities satisfy independence

/N/m necessarily

This can be counterintuitive! 21



Sequential Process Ball drawn

un (5 R

N
1/10 3/4
3R1B
1/4
3/10
5/12 7/12
5R7B

Are R and 3R3B independent?

Setting: An urn contains:

* 3red and 3 blue balls w/ probability 3/5

* 3redand 1blue balls w/ probability 1/10
* 5redand 7 blue balls w/ probability 3/10
B We draw a ball at random from the urn.

""""""""""""""""""""""""" E S G U
s 2o 90

P(3R3B) x P(R | 3R38)

Independent! P(R) = P(R | 3R3B)

22
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Often probability space (), P) is given implicitly via sequential
process

* Experiment proceeds in n sequential steps, each step follows
some local rules defined by the chain rule and independence

* Natural extension: Allows for easy definition of experiments
where ()| = oo
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Fun: Von Neumann’s Trick with a biased coin

* How to use a biased coin to get a fair coin flip:

—Suppose that you have a biased coin:
PH)=p P(T)=1-p

1. Flip coin twice: Ifyouget HH or TT go to step 1
2. If you got HT output H; if you got TH output T.

Why isit fair? P(H) = P(HT) =p(1—p)=({1 —p)p = P(TH) = P(T)

Drawback: You may never get to step 2.
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The sample space for Von Neumann’s trick

* For each round of Von Neumann’s trick we flipped the
biased coin twice.

—If HT or TH appears, the experiment ends:
 Total probability each round: 2p(1 —p) call this g

—If HH or TT appears, the experiment continues:
« Total probability each round: p? + (1 — p)? thisis1 — g

* Probability that flipping ends inround tis (1 — ¢)*~' - g
— Conditioned on ending inround t, P(H) = P(T) = 1/2
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Sequential Process — Example

HTUTH

(HH U TT)(HT U TH)

(HH U TT)?(HT U TH)

(HH U TT)3(HT U TH)

28



The sample space for Von Neumann’s trick

More precisely, the sample space contains the successful outcomes:
Us=(HH U TT)t_l(HT UTH) 6
P A CLL S AE R &
which together have probability Y72 (1 — q)* " 'q forqg = 2p(1 — p)

e
as well as all of the failing outcomes in (HH U =,
: |
Observethatg # 0iff 0 < p < 1. We have two cases: -V T4,
e Ifg#0then)2 . (1—q)"t=1/gso0 suc(ycessful outcomes account
for total probability 1. Vi e a s — o= (\-9)

* If g = 0 then either:
— p = 1and (HH)® has probability 1.

— p = 0and (TT)* has probability 1.
29
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Conditional Independence

Definition. Two events A and B are independent conditioned on C if
' P(C)#+#0andP(ANB|C)=P(A|C) -P(B|OC).

« IfP(ANC) # 0, equivalentto P(B|[ANC) = P(B|C)
e IfP(BNC) #0,equivalentto P(A|[BNC) =P(A|C)

_____________________________________________________________________________________________________________________________________________________________________

Plain Independence. Two events A and B are independent if
| P(ANnB) = P(A) - P(B).

+ IfP(A) # 0, equivalent to P(B|4) = P(B)
+ IfP(B) # 0, equivalent to P(A|B) = P(A)

O 31___:



Example — Throwing Dice

Suppose that Coin 1 has probability of heads 0.3

and Coin 2 has probability of head 0.9.
We choose one coin randomly with equal probability and flip that coin 3
times independently. What is the probability we get all heads?

P(HHH) = p([:I[-_[[-! |ICy) - ;@ + P(HHH | C,) - P(Cy) LawofTo(tl._’:11I_PP)robabiIity

= P(H|Cy)? P(Cy) + P(H|Cy)° P(Cy) Conditional Independence
:2()9_33“&54-0.93'0.5:, ﬂ8\/

C; = coin i was selected
/\



Conditional independence and Bayesian inference in practice:
Graphical models

The sample space (1 is often the Cartesian product of possibilities of
many different variables

We often can understand the probability distribution P on () based on
local properties that involve a few of these variables at a time

We can represent this via a directed acyclic graph augmented with
probability tables (called a Bayes net) in which each node represents
one or more variables...

33



Graphical Models/Bayes Nets

* Bayes net for the Zika testing probability space ({1, P)

Tests
Positive

-
-
-
-
-
-
-
-
-
-
-

z | -z
0005 |0995 |
T | T
7 loo9s |002 |
-7 |0.01, |0.99
\\\
\\\
P(T|—|Z)

Conditional Probability Table:

* One column for each value of
the variables at the node

* One row for each combination
of values of immediate
predecessors

() = Cartesian product of possible
value assignments at all nodes.
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Graphical Models/Bayes Nets
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“A Bayesian Network Model for Diagnosis of Liver Disorders” — Agnieszka Onisko, M.S.,
Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.- September 1999.
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Graphical Models/Bayes Nets

Bayes Net assumption/requirement

* The only dependence between variables is given by paths in
the Bayes Net graph:

* if only edges are

then A and C are conditionally independent given the value of B

A, B, C conditionally ° 0 e

independent given D

o ° e A, B, and C are Q

independent

Defines a unique global probability space ((, P) 36




Inference in Bayes Nets

Given
* Bayes Net
* graph
» conditional probability tables
for all nodes

Observed values of variables at
some nodes

* e.g, clinical test results

Compute

* Probabilities of variables at
other nodes

e e.g., diagnoses

For much more see CSE 473
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“A Bayesian Network Model for Diagnosis of Liver Disorders” — Agnieszka

Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.-
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