Lecture 4: Counting pigeons, counting practice
Last Class: Counting
• Binomial Coefficients
• Binomial Theorem
• Inclusion-Exclusion

Today:
• Pigeonhole Principle
• Counting practice
Inclusion-Exclusion

But what if the sets are not disjoint?

\[|A| = 43 \]
\[|B| = 20 \]
\[|A \cap B| = 7 \]
\[|A \cup B| = ? ? ? \]

Fact. \[|A \cup B| = |A| + |B| - |A \cap B| \]
Inclusion-Exclusion Example: RSA

Last time: For (distinct) primes p, q, and $N = p \cdot q$, how many integers in $\{0, \ldots, N - 1\}$ have no common factor with N?

Idea:
- A = integers $\{0, \ldots, N - 1\}$ divisible by p = multiples of p mod N
- B = integers $\{0, \ldots, N - 1\}$ divisible by q = multiples of q mod N
- Wanted: $N - |A \cup B|$
Example: \(p = 3, q = 5 \quad N = 3 \times 5 \)

\[
B = \{0, 5, 10\}
\]

\[
A = \{0, 3, 6, 9, 12\}
\]

\[|B| = 3\]

\[|A| = 5\]

\[A \cap B\] contains multiples of 3 & 5 (mod 15) \[A \cap B = \{0\}\]

\# Integers between 0 and 14 that share a non-trivial divisor with 15
\[
= |A| + |B| - |A \cap B| = 3 + 5 - 1 = 7
\]

\# Integers between 0 and 14 that share no non-trivial divisor with 15
\[
= 15 - 7 = 8
\]
More general: Integers mod N co-prime with $N = pq$ for p, q prime

$B = \{0, q, 2q, \ldots, (p - 1)q\}$

$A = \{0, p, 2p, \ldots, (q - 1)p\}$

$|B| = p$

$|A| = q$

$A \cap B$ contains multiples of p & $q \pmod{N}$ \quad \quad A \cap B = \{0\}$

Integers between 0 and $N - 1$ that share a non-trivial divisor with N

$= |A| + |B| - |A \cap B| = p + q - 1$

Integers between 0 and $N - 1$ that are co-prime with N

$= N - (p + q - 1) = pq - p - q + 1 = (p - 1)(q - 1)$
Last Class: Counting
 • Binomial Coefficients
 • Binomial Theorem
 • Inclusion-Exclusion

Today:
 • Pigeonhole Principle
 • Counting practice
Pigeonhole Principle (PHP): Idea

10 pigeons, 9 pigeonholes
If 11 children have to share 3 cakes, at least one cake must be shared by how many children?
Pigeonhole Principle – More generally

If there are n pigeons in $k < n$ holes, then one hole must contain at least $\frac{n}{k}$ pigeons!

Proof. Assume there are $< \frac{n}{k}$ pigeons per hole.

Then, there are $< k \cdot \frac{n}{k} = n$ pigeons overall.

Contradiction!
Pigeonhole Principle – Better version

If there are \(n \) pigeons in \(k < n \) holes, then one hole must contain at least \(\left\lceil \frac{n}{k} \right\rceil \) pigeons!

Reason. Can’t have fractional number of pigeons

Syntax reminder:

- **Ceiling:** \([x]\) is \(x\) rounded up to the nearest integer (e.g., \([2.731] = 3\))
- **Floor:** \([x]\) is \(x\) rounded down to the nearest integer (e.g., \([2.731] = 2\))
Pigeonhole Principle: Strategy

To use the PHP to solve a problem, there are generally 4 steps:

1. Identify pigeons
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP
Pigeonhole Principle – Example

In a room with 367 people, there are at least two with the same birthday.

Solution:

1. \(367\) pigeons = people
2. \(366\) holes (365 for a normal year + Feb 29) = possible birthdays
3. Person goes into hole corresponding to own birthday
4. By PHP, there must be two people with the same birthday
Pigeonhole Principle – Example (Surprising?)

In every set S of 100 integers, there are at least two elements whose difference is a multiple of 37.

When solving a PHP problem:

1. Identify pigeons
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP
Pigeonhole Principle – Example (Surprising?)

In every set S of 100 integers, there are at least two elements whose difference is a multiple of 37.

When solving a PHP problem:
1. Identify pigeons
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP

Pigeons: integers x in S
Pigeonholes: $\{0,1,...,36\}$

Assignment: x goes to $x \mod 37$

Since $100 > 37$, by PHP, there are $x \neq y \in S$ s.t.

$x \mod 37 = y \mod 37$ which implies

$x - y = 37k$ for some integer k
Last Class: Counting
• Binomial Coefficients
• Binomial Theorem
• Inclusion-Exclusion

Today:
• Pigeonhole Principle
• Counting practice
Quick Review of Cards

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades

How many possible 5 card hands?

\[
\binom{52}{5}
\]
A "straight" is five consecutive rank cards of any suit (where A, 2, 3, 4, 5 also counts as consecutive). How many possible straights?

\[10 \cdot 4^5 = 10,240 \]
Counting Cards II

- A flush is five card hand all of the same suit.
 How many possible flushes?

\[4 \cdot \binom{13}{5} = 5148 \]
Counting Cards III

- A flush is five card hand all of the same suit. How many possible flushes?
 \[4 \cdot \binom{13}{5} = 5148 \]

- How many flushes are NOT straights?
 \[= \#\text{flush} - \#\text{flush and straight} \]
 \[(4 \cdot \binom{13}{5} = 5148) - 10 \cdot 4 \]
For each object constructed, it should be possible to reconstruct the **unique** sequence of choices that led to it.

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

\[
\binom{4}{3} \cdot \binom{49}{2}
\]

Poll:
A. **Correct**
B. Overcount
C. Undercount

https://pollev.com/stefanotessaro617
For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

\[
\binom{4}{3} \cdot \binom{49}{2}
\]

Problem: This counts a hand with all 4 Aces in 4 different ways! e.g. it counts $A\spadesuit, A\heartsuit, A\clubsuit, A\diamondsuit, 2\heartsuit$ four times:

\[
\begin{align*}
\{A\spadesuit, A\heartsuit, A\clubsuit\} & \{A\diamondsuit, 2\heartsuit\} \\
\end{align*}
\]
For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

Use the sum rule

\[\binom{4}{3} \cdot \binom{48}{2} + \binom{48}{1} \]

No sequence \(\Rightarrow\) under counting \hspace{1cm} Many sequences \(\Rightarrow\) over counting
8 by 8 chessboard

How many ways to place a pawn, a bishop, and a knight so that none are in the same row or column?

Sequential process:
1. Column for pawn
2. Row for pawn
3. Column for bishop
4. Row for bishop
5. Column for knight
6. Row for knight

$$(8 \cdot 7 \cdot 6)^2$$
Rooks on chessboard

How many ways to place two identical rooks on a chessboard so that they don’t share a row or a column

\[
(8 \cdot 7)^2 / 2
\]

Fully ordered: Pretend Rooks are different
1. Column for rook1
2. Row for rook1
3. Column for rook2
4. Row for rook2

“Remove” the order of the two rooks:

\[
(8 \cdot 7)^2 / 2
\]
Counting when order only partly matters

We often want to count # of partly ordered lists:

Let $M =$ # of ways to produce fully ordered lists

$P =$ # of partly ordered lists

$N =$ # of ways to produce corresponding fully ordered list given a partly ordered list

Then $M = P \cdot N$ by the product rule. Often M and N are easy to compute:

$$P = \frac{M}{N}$$

Dividing by N “removes” part of the order.
Anagrams (another look at rearranging SEATTLE)

How many ways can you arrange the letters in “Godoggy”?

\[n = 7 \text{ Letters}, \ k = 4 \text{ Types \{G, O, D, Y\}} \]

\[n_1 = 3, \ n_2 = 2, \ n_3 = 1, \ n_4 = 1 \]

\[
\frac{7!}{3!2!1!1!} = \binom{7}{3,2,1,1}
\]

Multinomial coefficients
Multinomial Coefficients

If we have k types of objects (n total), with n_1 of the first type, n_2 of the second, …, and n_k of the k^{th}, then the number of orderings possible is

\[
\binom{n}{n_1, n_2, \ldots, n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}
\]
Counting using binary encoding*

The number of ways to distribute \(n \) indistinguishable balls into \(k \) distinguishable bins is

\[
\binom{n + k - 1}{k - 1} = \binom{n + k - 1}{n}
\]

E.g., = # of ways to add \(k \) non-negative integers up to \(n \)

aka. “stars and bars method”
How many ways can you distribute 32 identical coins among Alex, Barbara, Charlie, Dana, and Eve?

1. Identify balls
2. Identify bins

\[
\binom{32 + 5 - 1}{5 - 1}
\]
Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}$$

Corollary.

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$
Binomial Theorem: A less obvious consequence

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}$$

- $= -1$ if k is odd
- $= +1$ if k is even

Corollary. For every n, if O and E are the sets of odd and even integers between 0 and n

$$\sum_{k \in O} \binom{n}{k} = \sum_{k \in E} \binom{n}{k}$$

e.g., $n=4$: $1 4 6 4 1$

Proof: Set $x = -1, y = 1$ in the binomial theorem
Tools and concepts

- Sum rule, Product rule
- Permutations, combinations
- Inclusion-exclusion
- Binomial Theorem
- Combinatorial proofs
- Pigeonhole principle
- Binary encoding/stars and bars