
CSE 312

Foundations of Computing II

Lecture 4: Counting pigeons, counting practice
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Last Class: Counting

• Binomial Coefficients

• Binomial Theorem

• Inclusion-Exclusion
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Today: 

• Pigeonhole Principle

• Counting practice 



Inclusion-Exclusion
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But what if the sets are not disjoint?

�

�

Fact. � ∪ � � � � � � |� ∩ �|

�
�

� � 43 

� � 20 

� ∩ � � 7 

� ∪ � � ? ? ? 



Inclusion-Exclusion Example: RSA

Last time: For (distinct) primes �, �, and � � � ⋅ �, how many 
integers in {0, … , � � 1} have no common factor with �? 

Idea: 

– � � integers {0, … , � � 1} divisible by � = multiples of � mod �

– � � integers {0, … , � � 1} divisible by � = multiples of � mod �

– Wanted: � � |� ∪ �|
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� = {0, 3,6,9,12}
� = {0, 5,10}

multiples 
of 5

multiples 
of 3

#  Integers between 0 and 14 that share a non-trivial divisor with 15

= � + � − � ∩ � = 3 + 5 − 1 = 7 

� ∩ � = {0}� ∩ � contains multiples of 3 & 5 (mod 15) 

� = 3
� = 5

#  Integers between 0 and 14 that share no non-trivial divisor with 15

= 15 − 7 = 8 = 4 ⋅ 2

Example:   � = 3, � = 5 � = 3 × 5



6

� = {0, �, 2�, … , (� − 1)�}� = {0, �, 2�, … , (� − 1)�}

multiples 
of �

multiples 
of �

#  Integers between 0 and � − 1 that share a non-trivial divisor with �
= � + � − � ∩ � = � + � − 1 

� ∩ � = {0}� ∩ � contains multiples of � & � (mod �) 

� = �
� = �

#  Integers between 0 and � − 1 that are co-prime with �
= � − � + � − 1 = �� − � − � + 1 = (� − 1) (� − 1)

More general: Integers mod � co-prime with � = �� for �, � prime



Last Class: Counting

• Binomial Coefficients

• Binomial Theorem

• Inclusion-Exclusion
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Today: 

• Pigeonhole Principle

• Counting practice 



Pigeonhole Principle (PHP): Idea
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10 pigeons, 9 pigeonholes



Pigeonhole Principle: Idea

If 11 children have to share 3 cakes, at least one cake must be 
shared by how many  children?
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� �
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Pigeonhole Principle – More generally

If there are  pigeons in ! <  holes, then one hole must 

contain at least 
#

$
pigeons! 

Proof. Assume there are <
#

$
pigeons per hole.

Then, there are  < ! ⋅
#

$
=  pigeons overall. 

Contradiction!
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Pigeonhole Principle – Better version

If there are  pigeons in ! <  holes, then one hole must 

contain at least  
#

$
pigeons! 

Reason. Can’t have fractional number of pigeons

Syntax reminder:

• Ceiling: % is % rounded up to the nearest integer (e.g., 2.731 = 3)

• Floor: % is % rounded down to the nearest integer (e.g., 2.731 = 2)
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Pigeonhole Principle: Strategy

To use the PHP to solve a problem, there are generally 4 steps

1. Identify pigeons

2. Identify pigeonholes

3. Specify how pigeons are assigned to pigeonholes

4. Apply PHP
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Pigeonhole Principle – Example
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In a room with 367 people, there are at 
least two with the same birthday.

Solution: 
1. 367 pigeons = people
2. 366 holes (365 for a normal year + Feb 29) = possible 

birthdays
3. Person goes into hole corresponding to own birthday
4. By PHP, there must be two people with the same birthday



Pigeonhole Principle – Example (Surprising?)
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In every set ' of 100 integers, there are at least two

elements whose difference is a multiple of 37.

When solving a PHP problem:

1. Identify pigeons

2. Identify pigeonholes

3. Specify how pigeons are 
assigned to pigeonholes

4. Apply PHP



Pigeonhole Principle – Example (Surprising?)
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In every set ' of 100 integers, there are at least two

elements whose difference is a multiple of 37.

When solving a PHP problem:

1. Identify pigeons

2. Identify pigeonholes

3. Specify how pigeons are 
assigned to pigeonholes

4. Apply PHP

Pigeons: integers % in '

Pigeonholes: {0,1,…,36}

Assignment: % goes to % mod 37

Since 100 > 37, by PHP, there are % ≠ - ∈ ' s.t.
% mod 37 = - mod 37 which implies
% − - = 37 ! for some integer !



Last Class: Counting

• Binomial Coefficients

• Binomial Theorem

• Inclusion-Exclusion
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Today: 

• Pigeonhole Principle

• Counting practice 



● 52 total cards
● 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
● 4 different suits: Hearts, Diamonds, Clubs, Spades

Quick Review of Cards

How many possible 5 card hands?

52

5



● A "straight” is five consecutive rank cards of any suit (where 
A,2,3,4,5 also counts as consecutive). 
How many possible straights?

Counting Cards I
● 52 total cards
● 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
● 4 different suits: Hearts, Diamonds, Clubs, Spades

10 ⋅ 4/ = 10,240



● A flush is five card hand all of the same suit. 
How many possible flushes?

Counting Cards II

4 ⋅
13

5
= 5148

● 52 total cards
● 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
● 4 different suits: Hearts, Diamonds, Clubs, Spades



● A flush is five card hand all of the same suit. 
How many possible flushes?

Counting Cards III

• How many flushes are NOT straights?

4 ⋅
13

5
= 5148 − 10 ⋅ 4

4 ⋅
13

5
= 5148

● 52 total cards
● 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
● 4 different suits: Hearts, Diamonds, Clubs, Spades

= #flush - #flush and straight



For each object constructed, it should be possible to 
reconstruct the unique sequence of choices that led to it.

EXAMPLE: How many ways are there to choose a 5 card hand that 

contains at least 3 Aces?

Sleuth’s Criterion (Rudich) 

No sequence  under counting Many sequences  over counting

First choose 3 Aces. Then 
choose remaining two cards.

This Photo by 

Unknown Author 

is licensed under 

CC BY-SA
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3
⋅ 49

2

Poll:
A. Correct

B. Overcount

C. Undercount

https://pollev.com/paulbeame028



For each object constructed, it should be possible to 
reconstruct the unique sequence of choices that led to it.

EXAMPLE: How many ways are there to choose a 5 card hand that 

contains at least 3 Aces?

Sleuth’s Criterion (Rudich) 

Many sequences  over counting

First choose 3 Aces. Then 
choose remaining two cards.

Problem: This counts a  hand with 
all 4 Aces in 4 different ways! 
e.g. it counts A♣, A♦, A♥, A♠, 2♥

four times:
{A♣, A♦, A♥} {A♠, 2♥}
{A♣, A♦, A♠} {A♥, 2♥}
{A♣, A♥, A♠} {A♦, 2♥}
{A♦, A♥, A♠} {A♣, 2♥}

4

3
⋅

49

2



For each object constructed, it should be possible to 
reconstruct the unique sequence of choices that led to it.

EXAMPLE: How many ways are there to choose a 5 card hand that 

contains at least 3 Aces?

Sleuth’s Criterion (Rudich) 

No sequence  under counting Many sequences  over counting

Use the sum rule 

= # 5 card hand containing exactly 3 Aces 

+ # 5 card hand containing exactly 4 Aces 

4

3
⋅

48

2

48

1



Random Picture



8 by 8 chessboard

How many ways to place a pawn, a bishop, and a knight 
so that none are in the same row or column ?

Sequential process:
1. Column for pawn
2. Row for pawn
3. Column for bishop
4. Row for bishop
5. Column for knight
6. Row for knight

8 ⋅ 7 ⋅ 6 0



Counting when order only partly matters

26

We often want to count # of partly ordered lists:

Let  1 =  # of ways to produce fully ordered lists

2 = # of partly ordered lists

� = # of ways to produce corresponding fully ordered list given a partly 
ordered list

Then 1 = 2 ⋅ � by the product rule.     Often 1 and � are easy to compute:

2 = 1/�

Dividing by � “removes” part of the order.



Rooks on chessboard

How many ways to place two identical rooks on a 
chessboard so that they don’t share a row or a column

Fully ordered: Pretend Rooks are different 
1. Column for rook1
2. Row for rook1
3. Column for rook2
4. Row for rook2

“Remove” the order of the 
two rooks:    

8 ⋅ 7 0

8 ⋅ 7 0/2



How many ways can you arrange the letters in “Godoggy”? 

 = 7 Letters, ! = 4 Types {G, O, D, Y} 

 1 = 3,  2 = 2,  3 = 1,  4 = 1 

=
4!

6!0!7!7!

Anagrams   (another look at rearranging SEATTLE)

Multinomial coefficients

7
3,2,1,1



Multinomial Coefficients

If we have ! types of objects (8 total), with 89 of the first type, 
8: of the second, …, and 8; of the !th, then the number of 
orderings possible is

 
 7,  0, ⋯ ,  $

=  !
 7!  0! ⋯  $! 



Counting using binary encoding*

The number of ways to distribute  indistinguishable balls 
into ! distinguishable bins is

 + ! − 1
! − 1 =  + ! − 1

 

E.g., = # of ways to add ! non-negative integers up to  

*aka. “stars and bars method”



Coins

How many ways can you distribute 32 identical coins among 
Alex, Barbara, Charlie, Dana, and Eve?  

1. Identify balls 
2. Identify bins

32 + 5 − 1
5 − 1



Binomial Theorem
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Theorem. Let %, - ∈ ℝ and  ∈ ℕ a positive integer. Then,

% + - # = ?  
! %$-#@$

#

$AB

Corollary.

?  
! = 2#

#

$AB



Binomial Theorem:  A less obvious consequence
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Theorem. Let %, - ∈ ℝ and  ∈ ℕ a positive integer. Then,

% + - # = ?  
! %$-#@$

#

$AB

Corollary. For every  , if C and D are the sets of odd and even integers between 0
and  

?  
! = ?  

 

!

E

$∈F

E

$∈ G

Proof:  Set % = −1, - = 1 in the binomial theorem

e.g., n=4:   1 4 6 4 1

= −1 if ! is odd
= +1 if ! is even



● Sum rule, Product rule
● Permutations, combinations
● Inclusion-exclusion
● Binomial Theorem
● Combinatorial proofs
● Pigeonhole principle
● Binary encoding/stars and bars

Tools and concepts


