CSE 312

Foundations of Computing II

Lecture 1: Introduction & Counting

https://cs.washington.edu/312

Instructors

Stefano Tessaro [he/him]

tessaro@cs

Specialty: Cryptography

https://homes.cs.washington.edu/~tessaro

Paul Beame [he/him]

beame@cs

Specialty: Complexity

https://homes.cs.washington.edu/~beame

A Team of fantastic TAs

Jan Buzek

Shreya Jayaraman

Aleks Jovcic

Swati Padmanabhan

Jerome Paliakkara

Francis Peng

Phawin Prongpaophan

Tanmay Shah

Chloe Winston

Claris Winston

Ben Zhang

Lectures and Sections

Lectures MWF

- 9:30-10:20am (Stefano) or 1:30-2:20pm (Paul)
- Panopto recording and video released after class
- Annotated slides also uploaded.

Poll Everywhere

- Classes will be in person
- We will sometimes use Poll Everywhere during class
- As of this quarter it requires that you sign up directly

Sections Thu (starts this week)

Not recorded

Questions and Discussions

Office hours throughout the week (starting this <u>Friday</u>)

Ed Discussion

You should have received an invitation (synchronized with the class roaster)

- Material (resources tab)
- Announcements (discussion tab)
- Discussion (discussion tab)

Use Ed discussion forum as much as possible. You can make private posts that only the staff can view! Email instructors for personal issues.

Engagement

- "Concept checks" after each lecture 5-8 %
 - Must be done (on Gradescope) before the next lecture by 9:00am
 - Simple questions to reinforce concepts taught in each class
 - Keep you engaged throughout the week, so that homework becomes less of a hurdle
- 8 Problem Sets (Gradescope) 45-50 %
 - Solved <u>individually</u>. Discussion with others allowed but solution must be produced completely separately.
 - Generally due Wednesdays starting next week
 - First probm set posted this week before section
- Midterm 15-20 %
 - In class on Wednesday, May 4
- Final Exam 30-35 %
 - Monday, June 6 either 2:30-4:20 or 4:30-6:20 location TBA
 - For the A section this is a different time from the one on the UW final exam timetable

Check out the syllabus for policies on late submission for checkpoints and HW

Sections

- Sections will start this Thursday
- Will serve as additional preparation for problem set
- Attend them!

More details see

Course Webpage https://cs.washington.edu/312

Foundations of Computing II

Introduction to Counting, Probability & Statistics

for computer scientists

What is probability?? Why probability?!

Probability is our tool for understanding random processes

- Randomness in nature and the sciences/social sciences
 - At the quantum level, everything is random
 - Best way to understand and simulate behavior of complex systems
 - A way to design and understand experiments, observations
 - In the lab, the field, medical trials, surveys
- In Computer Science, randomness has these kinds of roles but also important new ones...

Probability and randomness in Computer Science

- Understanding/modelling the inputs to and behavior of our algorithms
 - In ML, program testing/fuzzing, algorithm analysis, ...
- Experiments to validate our designs
 - In user studies, HCI, CS applications in other fields, ...
- A tool for hiding information, protecting against adversaries/failures
 - Cryptography, privacy, fault tolerance, computer security, ...
- A tool for simpler and more efficient design
 - Data structures, algorithms, ML, ...

•

+ much more!

Content

- Counting (basis of discrete probability)
 - Counting, Permutation, Combination, inclusion-exclusion, Pigeonhole Principle
- What is probability
 - Probability space, events, basic properties of probabilities, conditional probability, independence, expectation, variance
- Properties of probability
 - Various inequalities, Zoo of discrete random variables, Concentration, Tail bounds
- Continuous Probability
 - Probability Density Functions, Cumulative Density Functions, Uniform, Exponential, Normal distributions, Central Limit Theorem, Estimation
- Applications
 - A sample of randomized algorithms, differential privacy, learning ...

Today: Counting

We are interested in counting the number of objects with a certain given property.

"How many ways are there to assign 7 TAs to 5 sections, such that each section is assigned to two TAs, and no TA is assigned to more than two sections?"

"How many integer solutions $(x, y, z) \in \mathbb{Z}^3$ does the equation $x^3 + y^3 = z^3$ have?"

Generally: Question boils down to computing cardinality |S| of some given set S.

(Discrete) Probability and Counting are Twin Brothers

"What is the probability that a random student from CSE312 has black hair?"

= # students with black hair #students

shutterstock.com • 579768892

Sum Rule

If you can choose from

- EITHER one of n options,
- OR one of m options with NO overlap with the previous n then the number of possible outcomes of the experiment is

$$n+m$$

Counting "lunches"

If a lunch order consists of **either** one of 6 soups **or** one of 9 salads, how many different lunch orders are possible?

Product Rule: In a sequential process, there are

- n_1 choices for the first step,
- n_2 choices for the second step (given the first choice), ..., and
- n_m choices for the m^{th} step (given the previous choices),

then the total number of outcomes is $n_1 \times n_2 \times \cdots \times n_m$

Product rule example – Strings

How many string of length 5 over the alphabet $\{A, B, C, ..., Z\}$ are there?

• E.g., AZURE, BINGO, TANGO, STEVE, SARAH, ...

$$\times$$
 \times \times \times $=$

How many binary string of length n over the alphabet $\{0,1\}$?

• E.g., 0 ··· 0, 1 ··· 1, 0 ··· 01, ...

$$\times$$
 \times \times \times \times \times \times

Product rule example – Laptop customization

Alice wants to buy a new laptop.

- The laptop can be blue, orange, purple, or silver.
- The SSD storage can be 128GB, 256GB, and 512GB
- The available RAM can be **8GB** or **16GB**.
- The laptop comes with a 13" or with a 15" screen.

How many different laptop configurations are there?

Product rule example -- Cartesian Product

Definition. The cartesian product of two sets S, T is

$$S \times T = \{(a, b) : a \in S, b \in T\}$$

Called a 2-sequence Order matters! $(a,b) \neq (b,a)$

$$\times$$
 = $|S \times T|$

Product rule example – Power set

Definition. The power set of S is the set of all subsets of S, $\{X: X \subseteq S\}$.

Notations: $\mathcal{P}(S)$ or simply 2^{S} (which we will use).

Example.
$$2^{\{\bigstar, \spadesuit\}} = \{\emptyset, \{\bigstar\}, \{\bigstar\}, \{\bigstar\}, \{\bigstar\}\}\}$$

 $2^{\emptyset} = \{\emptyset\}$

How many different subsets of S are there if |S| = n?

Product rule example – Power set

$$\operatorname{set} S = \{e_1, e_2, e_3, \cdots, e_n\}$$

$$\operatorname{subset} X = \{ \\ \times \times \times \times \times = [$$

Proposition. $|2^{S}| = 2^{|S|}$

Product rule – One more example

5 books

"How many ways are there to distribute 5 books among Alice, Bob, and Charlie?"

Every book to one person, everyone gets ≥ 0 books.

Alice

Example Book Assignment

Book assignment - Modeling

Correct?

Poll:

- A. Correct
- B. Overcount
- C. Undercount
- D. No idea

pollev.com/stefanotessaro617

$$2^5 = 32 \text{ options}$$
 X
 $2^5 = 32 \text{ options}$
 $B = \{\}$

$$2^5 = 32$$
 options $-C = \{ , \}$

$$= 32^3 \text{ assignments}$$

Problem – Overcounting

Problem: We are counting some <u>invalid</u> assignments!!!

→ <u>overcounting!</u>

What went wrong in the sequential process?
After assigning *A* to Alice, *B* is no longer a valid option for Bob

Book assignments – A Clever Approach

Lesson: Representation of what we are counting is very important!

Tip: Use different methods to double check yourself Think about counter examples to your own solution.

Food for thought: How many book assignment are there if no person can get more than 2 books?

The first concept check is out and due 9:00am before the next lecture

The concept checks are meant to help you immediately reinforce what is learned.

Students from previous quarters have found them really useful!