
CSE 312: Foundations of Computing II Spring 2022

Quiz Section 10

Task 1 – True or False?

a) True or False: The probability of getting 20 heads in 100 independent tosses of a coin that has probability
5/6 of coming up heads is p5{6q20p1{6q80.

b) True or False: Suppose we roll a six-sided fair die twice independently. Then the event that the first roll is
3 and the sum of the two rolls is 6 are independent.

c) True or False: If X and Y are discrete, non-negative, independent random variables, then so are X2 and Y 2.

d) True or False: The central limit theorem requires the random variables to be independent.

e) True or False: Let A, B and C be any three events defined with respect to a probability space. Then
PpAXB X Cq “ PpAXB | Cq PpB | Cq PpCq.

f) True or False: Let A be the event that a random 5-card poker hand is a 4 of a kind (i.e. contains 4 cards of
1 rank and 1 card of a different rank) and let B be the event that it contains at least one pair. The events A
and B are not independent.

g) True or False: If you flip a fair coin 1000 times, then the probability that there are 800 heads in total is the
same as the probability that there are 80 heads in the first 100 flips.

h) True or False: If N is a nonnegative integer valued random variable, then
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Task 2 – Short answer

a) Consider a set S containing k distinct integers. What is the smallest k for which S is guaranteed to have 3
numbers that are the same mod 5?

b) Let X be a random variable that can take any values between -10 and 10. What is the smallest possible value
the variance of X can take?

c) How many ways are there to rearrange the letters in the word KNICKKNACK?

d) I toss n balls into n bins uniformly at random. What is the expected number of bins with exactly k balls in
them?

e) Describe the probability mass function of a discrete distribution with mean 10 and variance 9 that takes only
2 distinct values.

f) Consider a six-sided die where Pp1q “ Pp2q “ Pp3q “ Pp4q “ 1{8 and Pp5q “ Pp6q “ 1{4. Let X be the
random variable which is the square root of the value showing. (For example, if the die shows a 1, X is 1, if
the die shows a 2, X is

?
2, if the die shows a 3, X “

?
3 and so on.) What is the expected value of X?

(Leave your answer in the form of a numerical sum; do not bother simplifying it.)

g) A bus route has inter-arrival times that are exponentially distributed with parameter λ “ 0.05 representing
the rate of arrivals per minute. What is the probability of waiting an hour or more for a bus?

h) How many different ways are there to select 3 dozen indistinguishable colored roses if red, yellow, pink, white,
purple and orange roses are available?

i) Two identical 52-card decks are mixed together. How many permutations of the 104 cards can you tell apart?
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Task 3 – Random boolean formulas

Consider a boolean formula on n variables in 3-CNF, that is, conjunctive normal form with 3 literals per clause.
This means that it is an “and” of “ors”, where each “or” has 3 literals. Each parenthesized expression (i.e., each
“or” of three literals) is called a clause. Here is an example of a boolean formula in 3-CNF, with n “ 6 variables
and m “ 4 clauses.

px1 _ x3 _ x5q ^ p␣x1 _␣x2 _ x6q ^ px5 _␣x3 _ x4q ^ p␣x1 _ x4 _ x5q.

a) What is the probability that p␣x1 _␣x2 _ x3q evaluates to true if variable xi is set to true with probability
pi, independently for all i?

b) Consider a boolean formula in 3-CNF with n variables and m clauses. What is the expected number of satisfied
clauses if each variable is set to true independently with probability 1/2? A clause is satisfied if it evaluates
to true. (In the displayed example above, if x1, . . . , x5 are set to true and x6 is set to false, then all clauses
but the second are satisfied.)

Task 4 – Biased coin flips

We flip a biased coin with probability p of getting heads until we either get heads or we flip the coin three times.
Thus, the possible outcomes of this random experiment are H,TH, TTH and TTT .

a) What is the probability mass function of X, where X is the number of heads. (Notice that X is 1 for the first
three outcomes, and 0 in the last outcome.)

b) What is the probability that the coin is flipped more than once?

c) Are the events “there is a second flip and it is heads” and “there is a third flip and it is heads” independent?
Justify your answer.

d) Given that we flipped more than once and ended up with heads, what is the probability that we got heads on
the second flip? (No need to simplify your answer.)

Task 5 – Bitcoin users

There is a population of n people. The number of Bitcoin users among these n people is i with probability
pi, where, of course,

ř

0ďiďn pi “ 1. We take a random sample of k people from the population (without
replacement). Use Bayes Theorem to derive an expression for the probability that there are i Bitcoin users in the
population conditioned on the fact that there are j Bitcoin users in the sample. Let Bi be the event that there
are i Bitcoin users in the population and let Sj be the event that there are j Bitcoin users in the sample. Your
answer should be written in terms of the pℓ’s, i, j, n and k.

Task 6 – Investments

You are considering three investments. Investment A yields a return which is X dollars where X is Poisson with
parameter 2. Investment B yields a return of Y dollars where Y is Geometric with parameter 1/2. Investment
C yields a return of Z dollars which is Binomial with parameters n “ 20 and p “ 0.1. The returns of the three
investments are independent.

a) Suppose you invest simultaneously in all three of these possible investments. What is the expected value and
the variance of your total return?

b) Suppose instead that you choose uniformly at random from among the 3 investments (i.e., you choose each
one with probability 1/3). Use the law of total probability to write an expression for the probability that the
return is 10 dollars. Your final expression should contain numbers only. No need to simplify your answer.
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Task 7 – Another continuous r.v.

The density function of X is given by

fpxq “

#

a` bx2 when 0 ď x ď 1

0 otherwise.

If ErXs “ 3
5 , find a and b.

Task 8 – Poisson CLT practice

Suppose X1, . . . , Xn are iid Poissonpλq random variables, and let Xn “
1
n

řn
i“1 Xi, the sample mean. How large

should we choose n to be such that Prpλ2 ď Xn ď
3λ
2 q ě 0.99? Use the CLT and give an answer involving

Φ´1p¨q. Then evaluate it exactly when λ “ 1{10 using the Φ table on the last page.

Task 9 – Law of Total Probability Review

a) (Discrete version) Suppose we flip a coin with probability U of heads, where U is equally likely to be one of
ΩU “ t0,

1
n ,

2
n , ..., 1u (notice this set has size n`1). Let H be the event that the coin comes up heads. What

is PpHq?

b) (Continuous version) Now suppose U „ Uniform(0,1) has the continuous uniform distribution over the interval
r0, 1s. What is PpHq?

c) Let’s generalize the previous result we just used. Suppose E is an event, and X is a continuous random
variable with density function fXpxq. Write an expression for PpEq, conditioning on X.
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