
CSE 312: Foundations of Computing II Spring 2022

Quiz Section 8 – Solutions

Review

1) Markov’s Inequality: Let X be a non-negative random variable, and α ą 0. Then, P pX ě αq ď
ErXs

α .

2) Chebyshev’s Inequality: Suppose Y is a random variable with E rY s “ µ and Var pY q “ σ2. Then, for any

α ą 0, P p|Y ´ µ| ě αq ď σ2

α2 .

3) Chernoff Bound (for the Binomial): Suppose X „ Binpn, pq and µ “ np. Then, for any 0 ă δ ă 1,

- P p|X ´ µ| ě δµq ď e´
δ2µ
4

4) Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter (or
vector of parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE “ argmax
θ

L px1, . . . , xn | θq “ argmax
θ

lnL px1, . . . , xn | θq

Task 1 – Tail bounds

Suppose X „ Binomialp6, 0.4q. We will bound PpX ě 4q using the tail bounds we’ve learned, and compare this
to the true result.

a) Give an upper bound for this probability using Markov’s inequality. Why can we use Markov’s inequality?

We know that the expected value of a binomial distribution is np, so: PpX ě 4q ď
ErXs

4 “ 2.4
4 “ 0.6.

We can use it since X is nonnegative.

b) Give an upper bound for this probability using Chebyshev’s inequality. You may have to rearrange algebraically
and it may result in a weaker bound.

PpX ě 4q “ PpX ´2.4 ě 1.6q ď Pp|X ´2.4| ě 1.6q we can add those absolute value signs because
that only adds more possible values, so it is an upper bound on the probability of X ´ 2.4 ě 1.6.
Then, using Chebyshev’s inequality we get:

Pp|X ´ 2.4| ě 1.6q ď
V arpXq

1.62 “ 1.44
1.62 “ 0.5625

c) Give an upper bound for this probability using the Chernoff bound.

PpX ě 4q “ PpX ě p1 ` 2
3 q2.4q ď e´p 2

3 q
2ErXs{4 “ e´4ˆ2.4{36 « 0.77

d) Give the exact probability.

Since X is a binomial, we know it has a range from 0 to n (or in this case 0 to 6). Thus, the
possible values to satisfy X ě 4 are 4, 5, or 6. We plug in the PMF for each to get: PpX ě 4q “

PpX “ 4q ` PpX “ 5q ` PpX “ 6q “
`

6
4

˘

p0.4q4p0.6q2 `
`

6
5

˘

p0.4q5p0.6q `
`

6
6

˘

0.46 « 0.1792

Task 2 – Exponential Tail Bounds

Let X „ Exppλq and k ą 1{λ. Recall that E rXs “ 1
λ and Var pXq “ 1

λ2 .

a) Use Markov’s inequality to bound PpX ě kq.
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PpX ě kq ď
1

λk

b) Use Chebyshev’s inequality to bound PpX ě kq.

PpX ě kq “ P
ˆ

X ´
1

λ
ě k ´

1

λ

˙

ď P
ˆ

ˇ

ˇ

ˇ

ˇ

X ´
1

λ

ˇ

ˇ

ˇ

ˇ

ě k ´
1

λ

˙

ď
1

λ2pk ´ 1{λq2
“

1

pλk ´ 1q2

c) What is the exact formula for PpX ě kq?

PpX ě kq “ e´λk

d) For λk ě 3, how do the bounds given in parts (a), (b), and (c) compare?

e´λk ă
1

pλk ´ 1q2
ă

1

λk

so Markov’s inequality gives the worst bound.

Task 3 – Mystery Dish!

A fancy new restaurant has opened up which features only 4 dishes. The unique feature of dining here is that
they will serve you any of the four dishes randomly according to the following probability distribution: give dish
A with probability 0.5, dish B with probability θ, dish C with probability 2θ, and dish D with probability 0.5´ 3θ.
Each diner is served a dish independently. Let xA be the number of people who received dish A, xB the number
of people who received dish B, etc, where xA ` xB ` xC ` xD “ n. Find the MLE for θ, θ̂.

The data tells us, for each diner in the restaurant, what their dish was. We begin by computing
the likelihood of seeing the given data given our parameter θ. Because each diner is assigned a dish
independently, the likelihood is equal to the product over diners of the chance they got the particular
dish they got, which gives us:

Lpx | θq “ 0.5xAθxB p2θqxC p0.5 ´ 3θqxD

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it
equal to 0, and solve for θ̂.

lnLpx | θq “ xA lnp0.5q ` xB lnpθq ` xC lnp2θq ` xD lnp0.5 ´ 3θq

d

dθ
lnLpx | θq “

xB

θ
`

xC

θ
´

3xD

0.5 ´ 3θ

xB

θ̂
`

xC

θ̂
´

3xD

0.5 ´ 3θ̂
“ 0

Solving yields θ̂ “ xB`xC

6pxB`xC`xDq
.
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Task 4 – A Red Poisson

Suppose that x1, . . . , xn are i.i.d. samples from a Poisson(θ) random variable, where θ is unknown. In other
words, they follow the distributions Ppk; θq “ θke´θ{k!, where k P N and θ ą 0 is a positive real number.

Find the MLE of θ.

We follow the recipe given in class:

L px1, . . . , xn | θq “

n
ź

i“1

e´θ θ
xi

xi!

lnL px1, . . . , xn | θq “

n
ÿ

i“1

r´θ ´ lnpxi!q ` xi lnpθqs

d

dθ
lnL px1, . . . , xn | θq “

n
ÿ

i“1

”

´1 `
xi

θ

ı

´n `
Σn

i“1xi

θ̂
“ 0

θ̂ “
Σn

i“1xi

n

Task 5 – Y Me?

Let y1, y2, ...yn be i.i.d. samples of a random variable from the family of distributions Y pθq with densities

fpy; θq “
1

2θ
exp

ˆ

´
|y|

θ

˙

,

where θ ą 0. Find the MLE for θ in terms of |yi| and n.

We follow the recipe outlined in class:

L py1, . . . , yn | θq “

n
ź

i“1

1

2θ
expp´

|yi|

θ
q

lnL py1, . . . , yn | θq “

n
ÿ

i“1

„

´ ln 2 ´ ln θ ´
|yi|

θ

ȷ

d

dθ
lnL py1, . . . , yn | θq “

n
ÿ

i“1

„

´
1

θ
`

|yi|

θ2

ȷ

“ 0

´
n

θ̂
`

Σn
i“1|yi|

θ̂2
“ 0

θ̂ “
Σn

i“1|yi|

n
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Task 6 – Pareto

The Pareto distribution was discovered by Vilfredo Pareto and is used in a wide array of fields but particularly
social sciences and economics. It is a density function with a slowly decaying tail, for example it can describe the
wealth distribution (a small group at the top holds most of the wealth). We consider its special form given by
the family of Pareto distributions Paretop1, αq with densities1

fpx;αq “
α

xα`1

where x ě 1 and the real number α ě 0 is the parameter. Moreover, fpx;αq “ 0 for x ă 1. You are given i.i.d.
samples x1, x2, . . . , xn from the Pareto distribution with parameter α. Find the MLE estimation of α.

We first need to solve for the likelihood function for which we have:

Lpx1, . . . , xn | αq “

n
ź

i“1

α

xα`1
i

So, for the log-likelihood function we have:

lnLpx1, . . . , xn | αq “

n
ÿ

i“1

ln

ˆ

α

xα`1
i

˙

“

n
ÿ

i“1

plnpαq ´ lnpxα`1
i qq

“

n
ÿ

i“1

plnpαq ´ pα ` 1q lnpxiqq

“ n lnpαq ´ pα ` 1q

n
ÿ

i“1

lnpxiq

So, for the derivative with respect to α we have:

d lnLpx1, . . . , xn | αq

dα
“

n

α
´

n
ÿ

i“1

lnpxiq

And then by setting to zero we get:

n

α̂
´

n
ÿ

i“1

lnpxiq “ 0

n

α̂
“

n
ÿ

i“1

lnpxiq

α̂ “
n

řn
i“1 lnpxiq

.

Now, let’s (optionally) do a second derivative test to prove this is in fact a maximum. We have:

d2 lnLpx1, . . . , xn | αq

dα2
“ ´

n

α2
ă 0

So this is a maximum!

1The more general Pareto distribution depends on an additional real positive parameter m and follows the density fpx;α,mq “
α¨mα

xα`1 for x ě m, and is 0 for x ă m. Here, we consider the special case with m “ 1.

4


