
CSE 312: Foundations of Computing II Spring 2022

Quiz Section 6 – Solutions
Review

1) Uniform: X „ Uniformpa, bq iff X has the following probability density function:

fX pxq “

"

1
b´a if x P ra, bs

0 otherwise

ErXs “ a`b
2 and VarpXq “

pb´aq
2

12 . This represents each real number from ra, bs to be equally likely.

2) Exponential: X „ Exponentialpλq iff X has the following probability density function:

fX pxq “

"

λe´λx if x ě 0
0 otherwise

ErXs “ 1
λ and VarpXq “ 1

λ2 . FX pxq “ 1 ´ e´λx for x ě 0. The exponential random variable is the
continuous analog of the geometric random variable: it represents the waiting time to the next event, where
λ ą 0 is the average number of events per unit time. Note that the exponential measures how much time
passes until the next event (any real number, continuous), whereas the Poisson measures how many events
occur in a unit of time (nonnegative integer, discrete). The exponential random variable X is memoryless:

for any s, t ě 0, P pX ą s ` t | X ą sq “ P pX ą tq

The geometric random variable also has this property.

3) Normal (Gaussian, “bell curve”): X „ N pµ, σ2q iff X has the following probability density function:

fX pxq “
1

σ
?
2π

e´ 1
2

px´µq2

σ2 , x P R

ErXs “ µ and VarpXq “ σ2. The “standard normal” random variable is typically denoted Z and has mean
0 and variance 1: if X „ N pµ, σ2q, then Z “

X´µ
σ „ N p0, 1q. The CDF has no closed form, but we denote

the CDF of the standard normal as Φ pzq “ FZ pzq “ P pZ ď zq. Note from symmetry of the probability
density function about z “ 0 that: Φ p´zq “ 1 ´ Φpzq.

Task 1 – Will the battery last?

Suppose that the number of miles that a car can run before its battery wears out is exponentially distributed with
expectation 10,000 miles. If the owner wants to take a 5000 mile road trip, what is the probability that she will be
able to complete the trip without replacing the battery, given that the car has already been used for 2000 miles?

Let N be a r.v. denoting the number of miles until the battery wears out. Then N „ expp10, 000´1q,
because N measures the ”time” (in this case miles) before an occurrence (the battery wears out) with
expectation 10,000. Since this is an exponential distribution, and the expectation of an exponential
distribution is 1

λ , λ “ 1
10,000 . Therefore, via the property of memorylessness of the exponential

distribution:

PpN ě 5000 | N ě 2000q “ PpN ě 3000q “ 1 ´ PpN ď 3000q “ 1 ´

´

1 ´ e´ 3000
10000

¯

« 0.741
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Task 2 – Create the distribution

Suppose X is a continuous random variable that is uniform on r0, 1s and uniform on r1, 2s, but

Pp1 ď X ď 2q “ 2 ¨ Pp0 ď X ă 1q.

Outside of r0, 2s the density is 0. What is the PDF and CDF of X?

The fact that X is uniform on each of the intervals means that its PDF is constant on each. So,

fXpxq “

$

’

&

’

%

c 0 ă x ď 1

d 1 ă x ď 2

0 otherwise

Note that FXp1q ´ FXp0q “ c and FXp2q ´ FXp1q “ d. The area under the PDF must be 1, so

1 “ FXp2q ´ FXp0q “ FXp2q ´ FXp1q ` FXp1q ´ FXp0q “ d ` c

Additionally,

d “ FXp2q ´ FXp1q “ Pp1 ď X ď 2q “ 2 ¨ Pp0 ď X ď 1q “ 2 ¨ pFXp1q ´ FXp0qq “ 2c

To solve for c and d in our PDF, we need only solve the system of two equations from above: d`c “ 1,
d “ 2c. So, d “ 2

3 and c “ 1
3 . Taking the integral of the PDF yields the CDF, which looks like

FXpxq “

$

’

’

’

&

’

’

’

%

0 x ď 0
1
3x 0 ă x ď 1
2
3x ´ 1

3 1 ă x ď 2

1 x ą 2

Taking the integral of each component yields the CDF, which looks like

FXpxq “

$

’

’

’

&

’

’

’

%

0 x ď 0

cx 0 ă x ď 1

dx ´ c 1 ă x ď 2

1 x ą 2

To solve for c and d, we use the provided condition that Pp1 ď X ď 2q “ 2 ¨ Pp0 ď X ă 1q, which
implies that

FXp2q ´ FXp1q “ 2 ¨ pFXp1q ´ FXp0qq

Plugging in the values of our CDF for the values of x gives

1 ´ c “ 2pc ´ 0q

Solving for c gives c “ 1
3 . The value of d can be found by considering the area under the PDF, which

must sum to 1.
cp1 ´ 0q ` dp2 ´ 1q “ 1

Using our value that we found for c, we can solve this equation for d to find that d “ 2
3 .
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Task 3 – Max of uniforms

Let U1, U2, . . . , Un be mutually independent Uniform random variables on p0, 1q. Find the CDF and PMF for the
random variable Z “ maxpU1, . . . , Unq.

The key idea for solving this question is realizing that the max of n numbers maxpa1, ..., anq is less
than some constant c, if and only if each individual number is less than that constant c (i.e. ai ă c
for all i). Using this idea, we get

FZpxq “ PpZ ď xq “ PpmaxpU1, ..., Unq ď xq

“ PpU1 ď x, ...., Un ď xq

“ PpU1 ď xq ¨ ... ¨ PpUn ď xq rindependences

“ FU1
pxq ¨ ... ¨ FUn

pxq

“ FU pxqn rwhere U „ Unifp0, 1qs

So the CDF of Z is

FZpxq “

$

’

&

’

%

0 x ă 0

xn 0 ď x ď 1

1 x ą 1

To find the PDF, we take the derivative of each part of the CDF, which gives us the following

fZpxq “

#

n xn´1 0 ď x ď 1

0 otherwise

Task 4 – Grading on a curve

In some classes (not CSE classes) an examination is regarded as being good (in the sense of determining a valid
spread for those taking it) if the test scores of those taking it are well approximated by a normal density function.
The instructor often uses the test scores to estimate the normal parameters µ and σ2 and then assigns a letter
grade of A to those whose test score is greater than µ ` σ, B to those whose score is between µ and µ ` σ, C
to those whose score is between µ ´ σ and µ, D to those whose score is between µ ´ 2σ and µ ´ σ and F to
those getting a score below µ´ 2σ. If the instructor does this and a student’s grade on the test really is normally
distributed with mean µ and variance σ2, what is the probability that student will get each of the possible grades
A,B,C,D and F? (Use a table for anything you can’t calculate.)

We can solve for each of these probabilities by standardizing the normal curve and then looking up
each bound in the Z-table. Let X be the students score on the test. Then we have

PpAq “ PpX ě µ ` σq “ P
ˆ

X ´ µ

σ
ě 1

˙

“ 1 ´ P
ˆ

X ´ µ

σ
ă 1

˙

By the closure properties of the normal random variable, X´µ
σ is distributed as a normal random

variable with mean 0 and variance 1. Since this is the standard normal, we can plug it into our
Φ-table to get the following:

PpAq “ 1 ´ Φp1q “ 1 ´ 0.84134 “ 0.15866

The other probabilities can be found using a similar approach:

PpBq “ Ppµ ă X ă µ ` σq “ Φp1q ´ Φp0q “ 0.34134

PpCq “ Ppµ ´ σ ă X ă µq “ Φp0q ´ Φp´1q “ 0.34134

PpDq “ Ppµ ´ 2σ ă X ă µ ´ σq “ Φp´1q ´ Φp´2q “ 0.13591

PpF q “ PpX ă µ ´ 2σq “ Φp´2q “ 0.02275
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Task 5 – Throwing a dart

Consider the closed unit circle of radius r, i.e., S “ tpx, yq : x2 ` y2 ď r2u. Suppose we throw a dart onto this
circle and are guaranteed to hit it, but the dart is equally likely to land anywhere in S. Concretely this means
that the probability that the dart lands in any particular area of size A (that is entirely inside the circle of radius
R), is equal to A

Area of whole circle . The density outside the circle of radius r is 0.
Let X be the distance the dart lands from the center. What is the CDF and pdf of X? What is ErXs and

VarpXq?

Since FXpxq is the probability that the dart lands inside the circle of radius x, that probability is the
area of a circle of radius x divided by the area of the circle of radius r (i.e., πx2{πr2). Thus, our
CDF looks like

FXpxq “

$

’

&

’

%

0 x ă 0
x2

r2 0 ă x ď r

1 x ą r

To find the PDF we just need to take the derivative of the CDF, which give us the following:

fXpxq “

#

2x
r2 0 ă x ď r

0 otherwise

Using the definition of expectation we get

ErXs “

ż 8

´8

xfXpxqdx “

ż r

0

x
2x

r2
dx “

2

3r2

´

x3
ˇ

ˇ

ˇ

r

0

¯

“
2

3
r

We know that VarpXq “ ErX2s ´ ErXs2.

ErX2s “

ż 8

´8

x2fXpxqdx “

ż r

0

x2 2x

r2
dx “

2

4r2

´

x4
ˇ

ˇ

ˇ

r

0

¯

“
1

2
r2

Plugging this into our variance equation gives

VarpXq “ ErX2s ´ ErXs2 “
1

2
r2 ´

ˆ

2

3
r

˙2

“
1

18
r2

Task 6 – A square dartboard?

You throw a dart at an s ˆ s square dartboard. The goal of this game is to get the dart to land as close to the
lower left corner of the dartboard as possible. However, your aim is such that the dart is equally likely to land
at any point on the dartboard. Let random variable X be the length of the side of the smallest square B in the
lower left corner of the dartboard that contains the point where the dart lands. That is, the lower left corner of B
must be the same point as the lower left corner of the dartboard, and the dart lands somewhere along the upper
or right edge of B. For random variable X, find the CDF, PDF, ErXs, and VarpXq.

See the image below for three examples of how X can take on a value.
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Since FXpxq is the probability that the dart lands inside the square of side length x, that probability
is the area of a square of length x divided by the area of the square of length radius s (i.e., x2{r2).
Thus, our CDF looks like

FXpxq “

$

&

%

0, if x ă 0
x2{s2, if 0 ď x ď s
1, if x ą s

To find the PDF, we just need to take the derivative of the CDF, which gives us the following:

fXpxq “
d

dx
FXpxq “

"

2x{s2, if 0 ď x ď s
0, otherwise

Using the definition of expectation and variance we can compute ErXs and VarpXq in the following
manner:

ErXs “

ż s

0

xfXpxqdx “

ż s

0

2x2

s2
dx “

2

s2

ż s

0

x2 dx “
2

3s2
“

x3
‰s

0
“

2

3
s

ErX2s “

ż s

0

x2fXpxqdx “

ż s

0

2x3

s2
dx “

2

s2

ż s

0

x3 dx “
1

2s2
“

x4
‰s

0
“

1

2
s2

VarpXq “ ErX2s ´ pErXsq2 “
1

2
s2 ´

ˆ

2

3
s

˙2

“
1

18
s2

Task 7 – Normal questions at the table

a) Let X be a normal random with parameters µ “ 10 and σ2 “ 36. Compute Pp4 ă X ă 16q.

Let X´10
6 “ Z. By the scale and shift properties of normal random variables Z „ N p0, 1q.

Pp4 ă X ă 16q “ P
ˆ

4 ´ 10

6
ă

X ´ 10

6
ă

16 ´ 10

6

˙

“ Pp´1 ă Z ă 1q “ Φp1q´Φp´1q “ 0.68268

b) Let X be a normal random variable with mean 5. If PpX ą 9q “ 0.2, approximately what is VarpXq?

Let σ2 “ VarpXq. Then,

PpX ą 9q “ P
ˆ

X ´ 5

σ
ą

9 ´ 5

σ

˙

“ 1 ´ Φ

ˆ

4

σ

˙

“ 0.2

So, Φ
`

4
σ

˘

“ 0.8. Looking up the phi values in reverse lets us undo the Φ function, and gives us
4
σ “ 0.845. Solving for σ we get σ « 4.73, which means that the variance is about 22.4.

c) Let X be a normal random variable with mean 12 and variance 4.
Find the value of c such that PpX ą cq “ 0.10.

PpX ą cq “ P
ˆ

X ´ 12

2
ą

c ´ 12

2

˙

“ 1 ´ Φ

ˆ

c ´ 12

2

˙

“ 0.1

So, Φ
`

c´12
2

˘

“ 0.9. Looking up the phi values in reverse lets us undo the Φ function, and gives us
c´12
2 “ 1.29. Solving for c we get c « 14.58.
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Task 8 – Batteries and exponential distributions

Let X1, X2 be independent exponential random variables, where Xi has parameter λi, for 1 ď i ď 2. Let
Y “ minpX1, X2q.

a) Show that Y is an exponential random variable with parameter λ “ λ1 ` λ2. Hint: Start by computing
PpY ą yq. Two random variables with the same CDF have the same pdf. Why?

We start with computing PpY ą yq, by substituting in the definition of Y .

PpY ą yq “ PpmintX1, X2u ą yq

The probability that the minimum of two values is above a value is the chance that both of them are
above that value. From there, we can separate them further because X1 and X2 are independent.

PpX1 ą y X X2 ą yq “ PpX1 ą yqPpX2 ą yq “ e´λ1ye´λ2y

“ e´pλ1`λ2qy “ e´λy

So FY pyq “ 1 ´ PpY ą yq “ 1 ´ e´λy and fY pyq “ λe´λy so Y „ Exppλq, since this is the same
CDF and PDF as an exponential distribution with parameter λ “ λ1 ` λ2.

b) What is P pX1 ă X2q? (Use the law of total probability.)

By the law of total probability,

PpX1 ă X2q “

ż 8

0

PpX1 ă X2 | X1 “ xqfX1pxqdx “

ż 8

0

PpX2 ą xqλ1e
´λ1x dx “

ż 8

0

e´λ2xλ1e
´λ1x dx “

λ1

λ1 ` λ2

c) You have a digital camera that requires two batteries to operate. You purchase n batteries, labelled 1, 2, . . . , n,
each of which has a lifetime that is exponentially distributed with parameter λ, independently of all other
batteries. Initially, you install batteries 1 and 2. Each time a battery fails, you replace it with the lowest-
numbered unused battery. At the end of this process, you will be left with just one working battery. What is
the expected total time until the end of the process? Justify your answer.

Let T be the time until the end of the process. We are trying to find ErT s. T “ Y1 ` ... ` Yn´1

where Yi is the time until we have to replace a battery from the ith pair. The reason it there
are only n ´ 1 RVs in the sum is because there are n ´ 1 times where we have two batteries
and wait for one to fail. By part (a), the time for one to fail is the min of exponentials, so
Yi „ Exponentialp2λq. Hence the expected time for the first battery to fail is 1

2λ . By linearity and

memorylessness, ErT s “
řn´1

i“1 ErY1s “ n´1
2λ .

d) In the scenario of the previous part, what is the probability that battery i is the last remaining battery as a
function of i? (You might want to use the memoryless property of the exponential distribution that has been
discussed.)

If there are two batteries i, j in the flashlight, by part (b), the probability each outlasts each other
is 1{2. Hence, the last battery n has probability 1{2 of being the last one remaining. The second
to last battery n ´ 1 has to beat out the previous battery and the nth, so the probability it lasts
the longest is p1{2q2 “ 1{4. Work down inductively to get that the probability the ith is the last
remaining is p1{2qn´i`1 for i ě 3. Finally the first two batteries share the remaining probability as
they start at the same time, with probability p1{2qn´1 each.
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