Quiz Section 1

Review

1) **Sum rule.** If you can choose from EITHER one of \(n \) options, OR one of \(m \) options with NO overlap with the previous \(n \), then the number of possible outcomes of the experiment is ________________.

2) **Product rule.** In a sequential process with \(m \) steps, if there are \(n_1 \) choices for the 1st step, \(n_2 \) choices for the 2nd step (given the first choice), ..., and \(n_m \) choices for the \(m \)th step (given the previous choices), then the total number of outcomes is ________________.

3) **Permutations.** The number of ways to re-order \(n \) elements is ________.

4) **\(k \)-permutations.** The number of ways to choose a sequence of \(k \) distinct elements from a set of \(n \) elements is ________.

5) **Subsets.** The number of ways to choose a \(k \)-element subset of a set of \(n \) elements is _____.

6) **Set difference.** Is it always true that \(|A \setminus B| = |A| - |B|\)?

Task 1 – Sets

a) For each one of the following sets, give its **cardinality**, i.e., indicate how many elements it contains:

 - \(A = \emptyset \)
 - \(B = \{\emptyset\} \)
 - \(C = \{\emptyset\} \)
 - \(D = \emptyset, \{\emptyset\} \)

b) Let \(S = \{a, b, c\} \) and \(T = \{c, d\} \). Compute:

 - \(S \cup T \)
 - \(S \cap T \)
 - \(S \setminus T \)
 - \(2^{S \setminus T} \)
 - \(S \times T \)

Task 2 – Basic Counting

a) Credit-card numbers are made of 15 decimal digits, and a 16th checksum digit (which is uniquely determined by the first 15 digits). How many credit-card numbers are there?

b) How many positive divisors does \(1440 = 2^5 \cdot 3^2 \cdot 5 \) have?

c) How many ways are there to arrange the CSE 312 staff on a line (11 TAs, two professors) for a group picture?

d) How many ways are there to arrange the CSE 312 staff on a line so that Professors Tessaro and Beame are at the two ends of the line?
Task 3 – Seating
How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if . . .
a) . . . all couples are to get adjacent seats?
b) . . . anyone can sit anywhere, except that one couple insists on not sitting in adjacent seats?

Task 4 – Weird Card Game
In how many ways can a pack of fifty-two cards (in four suits of thirteen cards each) be dealt to thirteen players, four to each, so that every player has one card from each of the suits?

Task 5 – Full Class
There are 40 seats and 40 students in a classroom. Suppose that the front row contains 10 seats, and there are 5 students who must sit in the front row in order to see the board clearly. How many seating arrangements are possible with this restriction?

Task 6 – HBCDEFGA
How many ways are there to permute the 8 letters A, B, C, D, E, F, G, H so that A is not at the beginning and H is not at the end?

Task 7 – Escape the Professor
There are 6 security professors and 7 theory professors taking part in an escape room. The solution requires that they choose 4 pairs, each consisting of one security professor and one theory professor. How many options for pairings do they have?

Task 8 – Lizards and Snakes!
Loudon has three pet lizards, Rango, a gecko named Gordon, and a goanna named Joanna, as well as two small pet snakes, Kaa and Basilisk, but only 4 terrariums to put them in. In how many different ways can he put his 5 pets in these 4 terrariums so that no terrarium has both a snake and a lizard?

Task 9 – Birthday Cake
A chef is preparing desserts for the week, starting on a Sunday. On each day, only one of five desserts (apple pie, cherry pie, strawberry pie, pineapple pie, and cake) may be served. On Thursday there is a birthday, so cake must be served that day. On no two consecutive days can the chef serve the same dessert. How many dessert menus are there for the week?

Task 10 – Photographs
Suppose that 8 people, including you and a friend, line up for a picture. In how many ways can the photographer organize the line if she wants to have fewer than 2 people between you and your friend?

Task 11 – Extended Family Portrait
A group of \(n \) families, each with \(m \) members, are to be lined up for a photograph. In how many ways can the \(nm \) people be arranged if members of a family must stay together?