CSE 312

Foundations of Computing II

Lecture 20: Tail Bounds Part II

Chebyshev and Chernoff Bounds

Agenda

- Covariance
- Markov's Inequality
- Chebyshev's Inequality

Review Tail Bounds (Idea)

Bounding the probability that a random variable is far from its mean. Usually statements of the form:

$$P(|X \ge a) \le b$$

$$P(|X - \mathbb{E}[X]| \ge a) \le b$$

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly

Review Markov's Inequality

Theorem. Let X be a random variable taking only non-negative values. Then, for any t > 0,

$$P(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$$

(Alternative form) For any $k \geq 1$,

$$P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$$

Incredibly simplistic – only requires that the random variable is non-negative and only needs you to know <u>expectation</u>. You don't need to know <u>anything else</u> about the distribution of X.

Review Example – Geometric Random Variable

Let X be geometric RV with parameter p

$$P(X = i) = (1 - p)^{i-1}p$$

$$\mathbb{E}[X] = \frac{1}{p}$$

"X is the number of times Alice needs to flip a biased coin until she sees heads, if heads occurs with probability p?

What is the probability that $X \ge 2\mathbb{E}[X] = 2/p$?

Markov's inequality: $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$

Can we do better?

$P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$

Review Example

Suppose that the average number of ads you will see on a website is 25. Compute an upper bound on the probability of seeing a website with 75 or more ads.

Where does that upper bound p lie?

a.
$$0 \le p < 0.25$$

⇒ b.
$$0.25 \le p < 0.5$$
 $7 = 73$

c.
$$0.5 \le p < 0.75$$

d.
$$0.75 \le p$$

X = RV for number of ads on a website visit

$$\mathbb{E}[X] = 25$$

$$P(X \ge 75) = P(X \ge 3 \cdot \mathbb{E}[X]) \le \frac{1}{3} = p$$

Note: If this is all you know about *X* then you can't get a better bound:

Example RV X with $\mathbb{E}[X] = 25$:

$$P(X = 0) = \frac{2}{3}$$
 $P(X = 75) = \frac{1}{3}$

Example

Suppose that the average number of ads you will see on a website is 25. Compute an upper bound on the probability of seeing a website with 20 or more ads.

Poll: Where does that upper bound p lie? pollev.com/paulbeameo28

- a. $0 \le p < 0.25$
- b. $0.25 \le p < 0.5$
- c. $0.5 \le p < 0.75$
- d. $0.75 \le p$
- e. Unable to compute

Example:

we brite alway?

X=2T

P=1

(Markon's Degnality

Dogn'ty for anythy = 1/2)

Tell you anythy = 1/2)

7

Agenda

- Markov's Inequality
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound

Chebyshev's Inequality

Theorem. Let X be a random variable. Then, for any t > 0,

$$P(|X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$$

Proof: Define $Z = X - \mathbb{E}[X]$. Then $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[Z^2]$.

$$P(|Z| \ge t) = P(Z^2 \ge t^2) \le \frac{\mathbb{E}[Z^2]}{t^2} = \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{t^2} = \frac{\text{Var}(X)}{t^2}$$

$$|Z| \ge t \text{ iff } Z^2 \ge t^2 \qquad \text{Markov's inequality } (Z^2 \ge 0)$$

Example – Geometric Random Variable

Let X be geometric RV with parameter p

$$P(X = i) = (1 - p)^{i-1}p$$
 $\mathbb{E}[X] = \frac{1}{p}$ $Var(X) =$

What is the probability that $X \ge 2\mathbb{E}(X) = 2/p$?

$$\underline{\mathsf{Markov:}}\,P(X\geq 2\mathbb{E}[X])\leq \tfrac{1}{2}$$

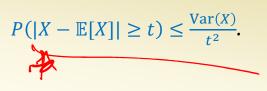
$$\underline{\mathsf{Markov:}}\,P(X\geq 2\mathbb{E}[X])\leq \frac{1}{2}$$

$$Var(X) = \frac{1-p}{p^2}$$

Chebyshev:
$$P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^2} = 1 - p$$

Better if
$$p > 1/2 \odot$$

Example



Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 4. Give an upper bound on the probability of seeing a website with 30 or more ads.

Poll: Where does that upper bound *p* lie? pollev.com/paulbeameo28

- C a. $0 \le p < 0.25$
 - b. $0.25 \le p < 0.5$
- $0.5 \le p < 0.75$
 - d. $0.75 \le p$
 - e. Unable to compute

$$t=5 = 30^{25}$$

$$Van(X) = 6^{2} = 4^{2} = (6)$$

$$V(X) = 6^{2} = 4^{2} = (6$$

Chebyshev's Inequality – Repeated Experiments

"How many times does Alice need to flip a biased coin <u>until she sees heads</u> n times, if heads occurs with probability p?

$$X = \#$$
 of flips until n times "heads"

$$X_i = \#$$
 of flips between $(i - 1)$ -st and i -th "heads"

$$X = \sum_{i=1}^{n} X_i$$

Note: $X_1, ..., X_n$ are independent and geometric with parameter p

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p} \qquad \operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) = \frac{n(1-p)}{p^2}$$

Chebyshev's Inequality – Coin Flips

"How many times does Alice need to flip a biased coin <u>until she sees heads</u> n times, if heads occurs with probability p?

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] \stackrel{\text{in}}{=} Var(X) = \sum_{i=1}^{n} Var(X_i) = \frac{p(1-p)}{p^2}$$

What is the probability that $X \ge 2\mathbb{E}[X] = 2n/p$?

$$\underline{\mathsf{Markov:}}\,P(X\geq 2\mathbb{E}[X])\leq \tfrac{1}{2}$$

Chebyshev:
$$P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^2} = \frac{1-p}{n}$$
Goes to zero as $n \to \infty$

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

 Very often loose upper-bounds are okay when designing for the worst case

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bound.

Brain Break

Agenda

- Markov's Inequality
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound

Chebyshev & Binomial Distribution

pmial Distribution

L(X) |act philler
$$S=1$$
)

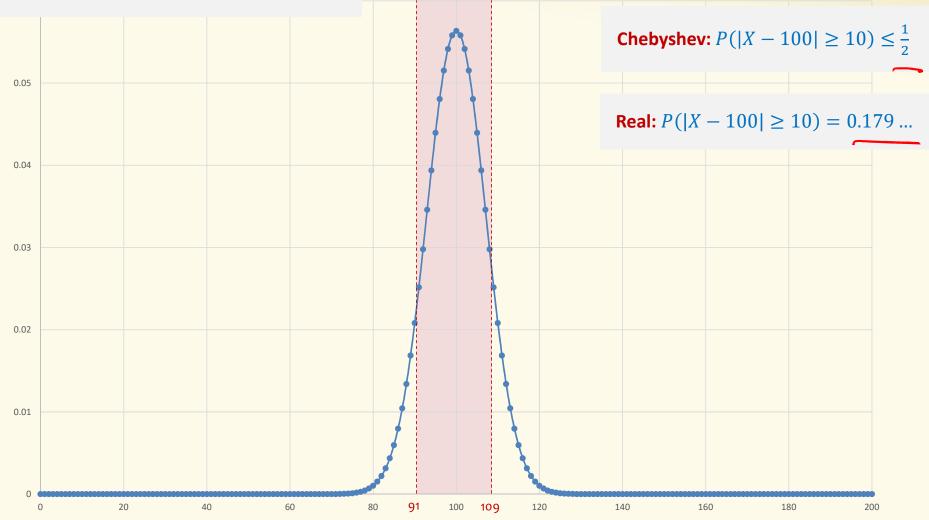
-2

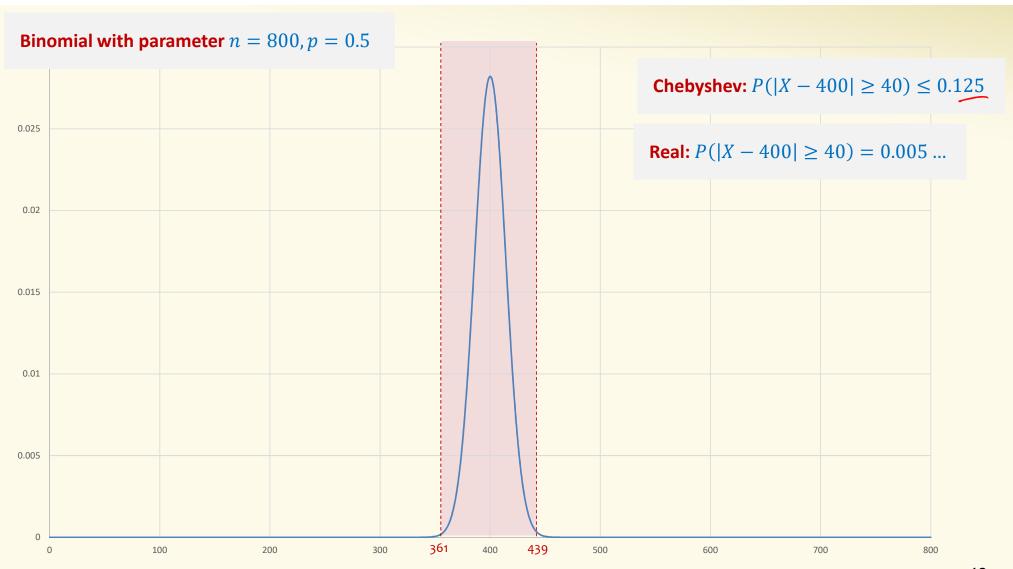
Reformulated: $P(|X - \mu| \ge \delta \mu) \le \frac{\sigma^2}{\delta^2 \mu^2}$ where $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}(X)$

If $X \sim \text{Bin}(n, p)$, then $\mu = np$ and $\sigma^2 = np(1-p)$

$$P(|X - \mu| \ge \delta\mu) \le \frac{np(1-p)}{\delta^2 n^2 p^2} = \underbrace{\frac{1}{\delta^2} \cdot \frac{1}{n} \cdot \frac{1-p}{p}}_{}$$

E.g.,
$$\delta = 0.1$$
, $p = 0.5$: $n = 200$: $P(|X - \mu| \ge \delta \mu) \le 0.5$
 $n = 800$: $P(|X - \mu| \ge \delta \mu) \le 0.125$





Chernoff-Hoeffding Bound

Binana Icen of volep

Theorem. Let $X = X_1 + \cdots + X_n$ be a sum of independent RVs, each taking values in [0,1], such that $\mathbb{E}[X] = \mu$. Then, for every $\delta \in [0,1]$,

$$P(|X - \mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 \mu}{4}}.$$

Herman Chernoff, Herman Rubin, Wassily Hoeffding

Example: If $X \sim \text{Bin}(n, p)$, then $X = X_1 + \dots + X_n$ is a sum of independent $\{0,1\}$ -Bernoulli variables, and $\mu = np$

Note: More accurate versions are possible, but with more cumbersome right-hand side (e.g., see textbook)

Chernoff-Hoeffding Bound – Binomial Distribution

Theorem. (CH bound, binomial case) Let $X \sim \text{Bin}(n, p)$. Let $\mu = \underline{np} = \mathbb{E}[X]$. Then, for any $\delta \in [0,1]$,

$$P(|X - \mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 np}{4}}.$$

Example:

$$p = 0.5$$

$$\delta = 0.1$$

Chebyshev Chernoff

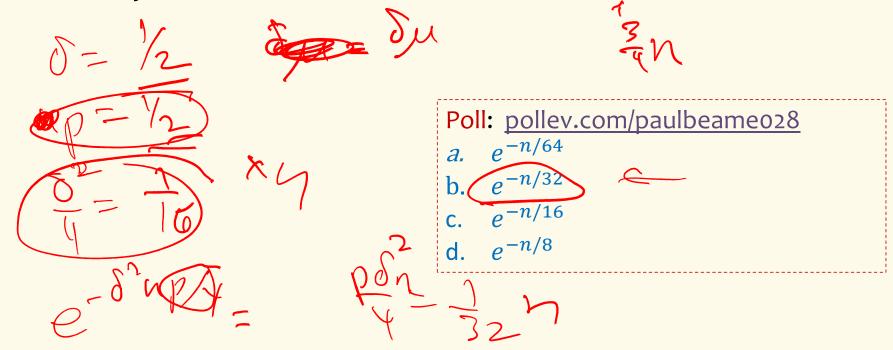
	n	$\frac{1}{\delta^2} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$	$e^{-\frac{\delta^2 np}{4}}$
_	800	0.125	0.3679
	2600	0.03846	0.03877
	8000	0.0125	0.00005
	80000	0.00125	3.72×10^{-44}

Chernoff Bound – Example

$$\mathbb{P}(|X-\mu| \geq \underline{\delta \cdot \mu}) \leq e^{-\frac{\delta^2 np}{4}}.$$

D--12

Alice tosses a fair coin n times, what is an upper bound for the probability that she sees heads at least $0.75 \le n$ times?



Chernoff vs Chebyshev – Summary

$$\frac{1}{\delta^2} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$$

Chebyshev,
linear
decrease in n

VS

Chernoff, <u>exponential</u> decrease in n

$$e^{-\frac{\delta^2 np}{4}}$$

Why is the Chernoff Bound True?

Proof strategy (upper tail): For any t > 0:

•
$$P(X \ge (1+\delta) \cdot \mu) = P(e^{tX} \ge e^{t(1+\delta) \cdot \mu})$$

• Then, apply Markov + independence:

$$P(e^{tX} \ge e^{t(1+\delta)\cdot\mu}) \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)\mu}} = \frac{\mathbb{E}[e^{tX_1}]\cdots\mathbb{E}[e^{tX_n}]}{e^{t(1+\delta)\mu}}$$

• Find *t* minimizing the right-hand-side.

Next time

Examples using the Chernoff bound together with the simple "Union Bound"

Beginning "estimation"